Previous |  Up |  Next

Article

Title: Stable computation of Laplacian eigenfunctions corresponding to clustered eigenvalues (English)
Author: Endo, Ryoki
Author: Liu, Xuefeng
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 5
Year: 2025
Pages: 595-609
Summary lang: English
.
Category: math
.
Summary: The accurate computation of eigenfunctions corresponding to tightly clustered Laplacian eigenvalues remains an extremely difficult problem. Using the shape difference quotient of eigenvalues, we propose a stable computation method for the eigenfunctions of clustered eigenvalues caused by domain perturbation. (English)
Keyword: stable eigenfunction computation
Keyword: clustered eigenvalues
Keyword: finite element method
Keyword: shape derivative
Keyword: difference quotient of eigenvalues
MSC: 65N25
MSC: 65N30
DOI: 10.21136/AM.2025.0132-25
.
Date available: 2025-11-07T16:05:33Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153150
.
Reference: [1] Davis, C., Kahan, W. M.: The rotation of eigenvectors by a perturbation. III.SIAM J. Numer. Anal. 7 (1970), 1-46. Zbl 0198.47201, MR 0264450, 10.1137/0707001
Reference: [2] Endo, R., Liu, X.: The second Dirichlet eigenvalue is simple on every non-equilateral triangle, Part II: Nearly equilateral triangles.Available at https://arxiv.org/abs/2305.14063v6 (2025), 24 pages. 10.48550/arXiv.2305.14063
Reference: [3] Haug, E. J., Rousselet, B.: Design sensitivity analysis in structural mechanics. II. Eigenvalue variations.J. Struct. Mech. 8 (1980), 161-186. MR 0607803, 10.1080/03601218008907358
Reference: [4] Liu, X.: Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems.SpringerBriefs in Mathematics. Springer, Singapore (2024). Zbl 1562.65007, MR 4807655, 10.1007/978-981-97-3577-8
Reference: [5] Liu, X., Vejchodský, T.: Fully computable a posteriori error bounds for eigenfunctions.Numer. Math. 152 (2022), 183-221. Zbl 1496.65204, MR 4474059, 10.1007/s00211-022-01304-0
Reference: [6] McCartin, B. J.: Eigenstructure of the equilateral triangle. I. The Dirichlet problem.SIAM Rev. 45 (2003), 267-287. Zbl 1122.35311, MR 2010379, 10.1137/S003614450238720
Reference: [7] Ogita, T., Aishima, K.: Iterative refinement for symmetric eigenvalue decomposition. II. Clustered eigenvalues.Japan J. Ind. Appl. Math. 36 (2019), 435-459. Zbl 1418.65049, MR 3975924, 10.1007/s13160-019-00348-4
Reference: [8] Parlett, B. N.: The Symmetric Eigenvalue Problem.Classics in Applied Mathematics 20. SIAM, Philadelphia (1998). Zbl 0885.65039, MR 1490034, 10.1137/1.9781611971163
Reference: [9] Práger, M.: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle.Appl. Math., Praha 43 (1998), 311-320. Zbl 0940.35059, MR 1627985, 10.1023/A:1023269922178
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo