Previous |  Up |  Next

Article

Title: An accelerated gradient descent method based on a non-monotone backtracking line search scheme for unconstrained optimization and image restoration problems (English)
Author: Ashrafi, Ali
Author: Mirzaei, Seyed Hamzeh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 5
Year: 2025
Pages: 711-728
Summary lang: English
.
Category: math
.
Summary: This study introduces an accelerated gradient descent method based on a non-monotone backtracking line search scheme. A simple adaptive quadratic model is enhanced by utilizing a real, positive definite scalar matrix derived from the Taylor expansion of the objective function, rather than relying on the exact Hessian. The global and superlinear convergence of the defined model is established under appropriate conditions. Numerical experiments on a set of standard unconstrained optimization problems and image restoration problems show that the new algorithm outperforms other comparable methods in terms of efficiency and robustness. (English)
Keyword: unconstrained optimization
Keyword: gradient descent method
Keyword: line search
Keyword: simple quadratic model
MSC: 49M37
MSC: 90C30
MSC: 90C53
DOI: 10.21136/AM.2025.0131-25
.
Date available: 2025-11-07T18:05:22Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153156
.
Reference: [1] Ahookhosh, M., Amini, K.: An efficient nonmonotone trust-region method for unconstrained optimization.Numer. Algorithms 59 (2012), 523-540. Zbl 1243.65066, MR 2892563, 10.1007/s11075-011-9502-5
Reference: [2] Andrei, N.: An acceleration of gradient descent algorithm with backtracing for unconstrained optimization.Numer. Algorithms 42 (2006), 63-73. Zbl 1101.65058, MR 2249567, 10.1007/s11075-006-9023-9
Reference: [3] Andrei, N.: An unconstrained optimization test functions collection.Adv. Model. Optim. 10 (2008), 147-161. Zbl 1161.90486, MR 2424936
Reference: [4] Andrei, N.: Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization.Bull. Malays. Math. Sci. Soc. (2) 34 (2011), 319-330. Zbl 1225.49030, MR 2788405
Reference: [5] Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives.Pac. J. Math. 16 (1966), 1-3. Zbl 0202.46105, MR 0191071, 10.2140/pjm.1966.16.1
Reference: [6] Conn, A. R., Gould, N. I. M., Toint, P. L.: Trust-Region Methods.MPS/SIAM Series on Optimization 1. SIAM, Philadelphia (2000). Zbl 0958.65071, MR 1774899, 10.1137/1.9780898719857
Reference: [7] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles.Math. Program. 91 (2002), 201-213. Zbl 1049.90004, MR 1875515, 10.1007/s101070100263
Reference: [8] Goldstein, A. A.: On steepest descent.J. Soc. Ind. Appl. Math., Ser. A, Control 3 (1965), 147-151. Zbl 0221.65094, MR 0184777, 10.1137/0303013
Reference: [9] Gonzales, R. C., Woods, R. E.: Digital Image Processing.Prentice Hall, Upper Saddle River (2008).
Reference: [10] Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton's method.SIAM. J. Numer. Anal. 23 (1986), 707-716. Zbl 0616.65067, MR 0849278, 10.1137/0723046
Reference: [11] Hager, W., Zhang, H.: A survey of nonlinear conjugate gradient methods.Pac. J. Optim. 2 (2006), 35-58. Zbl 1117.90048, MR 2548208
Reference: [12] Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems.J. Res. Natl. Bur. Stand. 49 (1952), 409-436. Zbl 0048.09901, MR 0050378, 10.6028/jres.049.044
Reference: [13] Ivanov, B., Stanimirović, P. S., Milovanović, G. V., Djordjević, S., Brajević, I.: Accelerated multiple step-size methods for solving unconstrained optimization problems.Optim. Methods Softw. 36 (2021), 998-1029. Zbl 1489.65085, MR 4432929, 10.1080/10556788.2019.1653868
Reference: [14] Li, D.-H., Fukushima, M., Qi, L., Yamashita, N.: Regularized Newton methods for convex minimization problems with singular solutions.Comput. Optim. Appl. 28 (2004), 131-147. Zbl 1056.90111, MR 2072529, 10.1023/B:COAP.0000026881.96694.32
Reference: [15] Li, Q., Zheng, B., Zheng, Y.: An efficient nonmonotone adaptive cubic regularization method with line search for unconstrained optimization problem.Appl. Math. Lett. 98 (2019), 74-80. Zbl 1423.90141, MR 3959825, 10.1016/j.aml.2019.05.040
Reference: [16] Mirzaei, S. H., Ashrafi, A.: Correction of nonmonotone trust region algorithm based on a modified diagonal regularized quasi-Newton method.J. Inequal. Appl. 2024 (2024), Article ID 90, 22 pages. Zbl 1546.49058, MR 4768662, 10.1186/s13660-024-03161-x
Reference: [17] Niri, T. D., Amini, K.: Effective nonmonotone trust region method based on a simple cubic model for unconstrained optimization problems.J. Appl. Math. Comput. 71 (2025), 707-723. Zbl 08078311, MR 4854953, 10.1007/s12190-024-02241-x
Reference: [18] Nocedal, J., Wright, S. J.: Numerical Optimization.Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). Zbl 1104.65059, MR 2244940, 10.1007/978-0-387-40065-5
Reference: [19] Petrović, M. J.: An accelerated double step size model in unconstrained optimization.Appl. Math. Comput. 250 (2015), 309-319. Zbl 1328.90115, MR 3285540, 10.1016/j.amc.2014.10.104
Reference: [20] Petrović, M. J., Stanimirović, P. S.: Accelerated double direction method for solving unconstrained optimization problems.Math. Probl. Eng. 2014 (2014), Article ID 965104, 8 pages. Zbl 1407.90262, MR 3193716, 10.1155/2014/965104
Reference: [21] Polyak, R. A.: Regularized Newton method for unconstrained convex optimization.Math. Program. 120 (2009), 125-145. Zbl 1189.90121, MR 2496429, 10.1007/s10107-007-0143-3
Reference: [22] Stanimirović, P. S., Ivanov, B., Ma, H., Mosić, D.: A survey of gradient methods for solving nonlinear optimization.Electron. Res. Arch. 28 (2020), 1573-1624. Zbl 1458.65067, MR 4182341, 10.3934/era.2020115
Reference: [23] Stanimirović, P. S., Miladinović, M. B.: Accelerated gradient descent methods with line search.Numer. Algorithms 54 (2010), 503-520. Zbl 1198.65104, MR 2670666, 10.1007/s11075-009-9350-8
Reference: [24] Toint, P. L.: An assessment of nonmonotone line search techniques for unconstrained optimization.SIAM. J. Sci. Comput. 17 (1996), 725-739. Zbl 0849.90113, MR 1384262, 10.1137/S106482759427021X
Reference: [25] Ueda, K., Yamashita, N.: A regularized Newton method without line search for unconstrained optimization.Comput. Optim. Appl. 59 (2014), 321-351. Zbl 1302.90218, MR 3253745, 10.1007/s10589-014-9656-x
Reference: [26] Wolfe, P.: Convergence conditions for ascent methods.SIAM Rev. 11 (1969), 226-235. Zbl 0177.20603, MR 0250453, 10.1137/1011036
Reference: [27] Yu, G., Huang, J., Zhou, Y.: A descent spectral conjugate gradient method for impulse noise removal.Appl. Math. Lett. 23 (2010), 555-560. Zbl 1186.94017, MR 2602408, 10.1016/j.aml.2010.01.010
Reference: [28] Zhang, H., Hager, W. W.: A nonmonotone line search technique and its application to unconstrained optimization.SIAM. J. Optim. 14 (2004), 1043-1056. Zbl 1073.90024, MR 2112963, 10.1137/S1052623403428208
Reference: [29] Zhang, H., Ni, Q.: A new regularized quasi-Newton algorithm for unconstrained optimization.Appl. Math. Comput. 259 (2015), 460-469. Zbl 1390.90527, MR 3338382, 10.1016/j.amc.2015.02.032
Reference: [30] Zhang, H., Ni, Q.: A new regularized quasi-Newton method for unconstrained optimization.Optim. Lett. 12 (2018), 1639-1658. Zbl 1407.90313, MR 3857025, 10.1007/s11590-018-1236-z
Reference: [31] Zheng, Y., Zheng, B.: A modified adaptive cubic regularization method for large-scale unconstrained optimization problem.Available at https://arxiv.org/abs/1904.07440 (2019), 21 pages. 10.48550/arXiv.1904.07440
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo