Previous |  Up |  Next

Article

Title: On parameter identification in the Stokes system with threshold leak boundary conditions (English)
Author: Mäkinen, Raino A. E.
Author: Haslinger, Jaroslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 6
Year: 2025
Pages: 735-761
Summary lang: English
.
Category: math
.
Summary: This paper addresses the identification of the leak bound function $g$ in the Stokes system with threshold leak boundary conditions, where $g$ varies spatially. The state problem is solved using the dual formulation of the algebraic system, and the resulting optimization problem is formulated as a nonsmooth optimization problem. We establish the existence of solutions for both the continuous and discrete formulations of the problem. The theoretical developments are complemented by numerical experiments, which compare the performance of the nonsmooth optimization approach with traditional regularization-based methods and global optimization techniques. (English)
Keyword: Stokes problem
Keyword: threshold leak boundary condition
Keyword: variational inequality
Keyword: nonsmooth and global optimization
Keyword: finite element method
MSC: 35J86
MSC: 49J20
MSC: 65K15
DOI: 10.21136/AM.2025.0142-25
.
Date available: 2025-12-20T04:50:35Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153222
.
Reference: [1] Arnold, D. N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations.Calcolo 21 (1984), 337-344. Zbl 0593.76039, MR 0799997, 10.1007/BF02576171
Reference: [2] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/s0168-2024(08)x7014-6
Reference: [3] Coleman, T. F., Li, Y.: A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables.SIAM J. Optim. 6 (1996), 1040-1058. Zbl 0861.65053, MR 1416528, 10.1137/S1052623494240456
Reference: [4] Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels.Dunod, Gauthier-Villars, Paris (1974), French. Zbl 0281.49001, MR 0463993
Reference: [5] Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide.Academic Press, Boston (1990). Zbl 0702.68004, MR 1058011, 10.1016/C2009-0-22351-8
Reference: [6] Fujita, H.: A mathematical analysis of motions of viscous incompressible fluid under leak and or slip boundary conditions.RIMS Kokyuroku 888 (1994), 199-216. Zbl 0939.76509, MR 1338892
Reference: [7] Fujita, H.: A coherent analysis of Stokes flows under boundary conditions of friction type.J. Comput. Appl. Math. 149 (2002), 57-69. Zbl 1058.76023, MR 1952966, 10.1016/S0377-0427(02)00520-4
Reference: [8] Gfrerer, H., Mandlmayr, M., Outrata, J. V., Valdman, J.: On the SCD semismooth* Newton method for generalized equations with applications to a class of static contact problems with Coulomb friction.Comput. Optim. Appl. 86 (2023), 1159-1191. Zbl 1536.90243, 10.1007/s10589-022-00429-0
Reference: [9] Haslinger, J., Kučera, R., Motyčková, K., Šátek, V.: Numerical modeling of the leak through semipermeable walls for 2D/3D Stokes flow: Experimental scalability of dual algorithms.Mathematics 9 (2021), Article ID 2906, 24 pages. 10.3390/math9222906
Reference: [10] Haslinger, J., Kučera, R., Sassi, T., Šátek, V.: Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D.Math. Comput. Simul. 189 (2021), 191-206. Zbl 1540.76089, MR 4297864, 10.1016/j.matcom.2020.12.015
Reference: [11] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization: Theory, Approximation, and Computation.Advances in Design and Control 7. SIAM, Philadelphia (2003). Zbl 1020.74001, MR 1969772, 10.1137/1.9780898718690
Reference: [12] Haslinger, J., Mäkinen, R. A. E.: The parameter identification in the Stokes system with threshold slip boundary conditions.ZAMM, Z. Angew. Math. Mech. 100 (2020), Article ID e201900209, 19 pages. Zbl 07806603, MR 4135765, 10.1002/zamm.201900209
Reference: [13] Haslinger, J., Mäkinen, R. A. E.: Optimal control problems in nonsmooth solid and fluid mechanics: Computational aspects.Impact of Scientific Computing on Science and Society Springer, Cham (2023), 181-193. 10.1007/978-3-031-29082-4_10
Reference: [14] Haslinger, J., Mäkinen, R. A. E.: Shape optimization for the Stokes system with threshold leak boundary conditions.Math. Comput. Simul. 221 (2024), 180-196. Zbl 07875908, MR 4715249, 10.1016/j.matcom.2024.03.002
Reference: [15] Haslinger, J., Stebel, J.: Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains.ZAMM, Z. Angew. Math. Mech. 96 (2016), 1049-1060. Zbl 1538.49055, MR 3550594, 10.1002/zamm.201500117
Reference: [16] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method.SIAM J. Optim. 13 (2002), 865-888. Zbl 1080.90074, MR 1972219, 10.1137/S1052623401383558
Reference: [17] Howell, J. S., Walkington, N. J.: Inf-sup conditions for twofold saddle point problems.Numer. Math. 118 (2011), 663-693. Zbl 1230.65128, MR 2822495, 10.1007/s00211-011-0372-5
Reference: [18] Kiwiel, K. C.: Proximity control in bundle methods for convex nondifferentiable minimization.Math. Program., Ser. A 46 (1990), 105-122. Zbl 0697.90060, MR 1045575, 10.1007/BF01585731
Reference: [19] Lemaréchal, C.: Nondifferentiable optimization.Optimization Handbooks in Operations Research and Management Science 1. Elsevier, Amsterdam (1989), 529-572. MR 1105106, 10.1016/S0927-0507(89)01008-X
Reference: [20] Mäkelä, M. M., Karmitsa, N., Wilppu, O.: Proximal bundle method for nonsmooth and nonconvex multiobjective optimization.Mathematical Modeling and Optimization of Complex Structures Computational Methods in Applied Sciences 40. Springer, Cham (2016), 191-204. MR 3411080, 10.1007/978-3-319-23564-6_12
Reference: [21] Inc, MathWorks: MATLAB: Version 2023.Available at https://www.mathworks.com/.
Reference: [22] Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results.Nonconvex Optimization and its Applications 28. Kluwer Academic Publishers, Dordrecht (1998). Zbl 0947.90093, MR 1641213, 10.1007/978-1-4757-2825-5
Reference: [23] Qi, L., Sun, J.: A nonsmooth version of Newton's method.Math. Program., Ser. A 58 (1993), 353-367. Zbl 0780.90090, MR 1216791, 10.1007/BF01581275
Reference: [24] Regis, R. G., Shoemaker, C. A.: A stochastic radial basis function method for the global optimization of expensive functions.INFORMS J. Comput. 19 (2007), 497-509. Zbl 1241.90192, MR 2364007, 10.1287/ijoc.1060.0182
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo