[1] Agoshkov, V. I., Lebedev, V. I.:
Poincaré-Steklov operators and methods for separation of a domain in variational problems. Vychisl. Protsessy Sist. 2 (1985), 173-227 Russian.
MR 0831493 |
Zbl 0596.35030
[2] Apel, T., Mateos, M., Pfefferer, J., Rösch, A.:
On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains. SIAM J. Control Optim. 53 (2015), 3620-3641.
DOI 10.1137/140994186 |
MR 3432846 |
Zbl 1330.49037
[6] Behrndt, J., Gesztesy, F., Mitrea, M.:
Sharp Boundary Trace Theory and Schrödinger Operators on Bounded Lipschitz Domains. Memoirs of the American Mathematical Society 307. AMS, Providence (2025).
DOI 10.1090/memo/1550 |
MR 4876779 |
Zbl 08028545
[12] Brenner, S. C., Sung, L.-Y.:
A new error analysis for finite element methods for elliptic Neumann boundary control problems with pointwise control constraints. Results Appl. Math. 25 (2025), Article ID 100544, 13 pages.
DOI 10.1016/j.rinam.2025.100544 |
MR 4854724 |
Zbl 08018243
[15] Casas, E., Raymond, J.-P.:
Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45 (2006), 1586-1611.
DOI 10.1137/050626600 |
MR 2272157 |
Zbl 1123.65061
[18] Deckelnick, K., Günther, A., Hinze, M.:
Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48 (2009), 2798-2819.
DOI 10.1137/080735369 |
MR 2558321 |
Zbl 1203.49043
[20] Gangl, P., Löscher, R., Steinbach, O.:
Regularization and finite element error estimates for elliptic distributed optimal control problems with energy regularization and state or control constraints. Comput. Math. Appl. 180 (2025), 242-260.
DOI 10.1016/j.camwa.2024.12.021 |
MR 4849816 |
Zbl 07979088
[22] Gräser, C., Kornhuber, R.:
Multigrid methods for obstacle problems. J. Comput. Math. 27 (2009), 1-44.
MR 2493556 |
Zbl 1199.65401
[23] Gunzburger, M. D., Hou, L., Svobodny, T. P.:
Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30 (1992), 167-181.
DOI 10.1137/0330011 |
MR 1145711 |
Zbl 0756.49004
[24] Hintermüller, M., Hinze, M.:
Moreau-Yosida regularization in state constrained elliptic control problems: Error estimates and parameter adjustment. SIAM J. Numer. Anal. 47 (2009), 1666-1683.
DOI 10.1137/080718735 |
MR 2505869 |
Zbl 1191.49036
[28] John, L., Steinbach, O.: Schur complement preconditioners for the biharmonic Dirichlet boundary value problem. Berichte aus dem Institut für Numerische Mathematik. Bericht 2013/4 Technische Universität Graz, Graz (2013), 16 pages.
[29] Jung, M., Langer, U., Meyer, A., Queck, W., Schneider, M.:
Multigrid preconditioners and their applications. Third Multigrid Seminar (Biesenthal, 1988) Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, Berlin (1989), 11-52.
MR 1004014 |
Zbl 0699.65076
[33] Langer, U., Löscher, R., Steinbach, O., Yang, H.:
Mass-lumping discretization and solvers for distributed elliptic optimal control problems. Numer. Linear Algebra Appl. 31 (2024), Article ID e2564, 22 pages.
DOI 10.1002/nla.2564 |
MR 4804322 |
Zbl 07953722
[34] Langer, U., Löscher, R., Steinbach, O., Yang, H.:
State-based nested iteration solution of optimal control problems with PDE constraints. Math. Control Relat. Fields 15 (2025), 1496-1537.
DOI 10.3934/mcrf.2025043 |
MR 4956351 |
Zbl 8109478
[35] Lasiecka, I., Malanowski, K.:
On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybern. 7 (1978), 21-36.
MR 0484630 |
Zbl 0459.49022
[39] May, S., Rannacher, R., Vexler, B.:
Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51 (2013), 2585-2611.
DOI 10.1137/080735734 |
MR 3070527 |
Zbl 1273.65087
[40] McLean, W.:
Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000).
MR 1742312 |
Zbl 0948.35001
[51] Tröltzsch, F.:
Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics 112. AMS, Providence (2010).
DOI 10.1090/gsm/112 |
MR 2583281 |
Zbl 1195.49001