Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Dirichlet boundary control problem; Laplace equation; finite element discretization; error estimate; solution method
Summary:
We investigate the Dirichlet boundary control of the Laplace equation, considering the control in $H^{1/2}(\partial \Omega )$, which is the natural space for Dirichlet data when the state belongs to $H^1(\Omega )$. The cost of the control is measured in the $H^{1/2}(\partial \Omega )$ norm that also plays the role of the regularization term. We discuss regularization and finite element error estimates enabling us to derive an optimal relation between the finite element mesh size $h$ and the regularization parameter $\varrho $, balancing the energy cost for the control and the accuracy of the approximation of the desired state. This relationship is also crucial in designing efficient solvers. We also discuss additional box constraints imposed on the control and the state. Our theoretical findings are complemented by numerical examples, including one example with box constraints.
References:
[1] Agoshkov, V. I., Lebedev, V. I.: Poincaré-Steklov operators and methods for separation of a domain in variational problems. Vychisl. Protsessy Sist. 2 (1985), 173-227 Russian. MR 0831493 | Zbl 0596.35030
[2] Apel, T., Mateos, M., Pfefferer, J., Rösch, A.: On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains. SIAM J. Control Optim. 53 (2015), 3620-3641. DOI 10.1137/140994186 | MR 3432846 | Zbl 1330.49037
[3] Arada, N., Raymond, J.-P.: Dirichlet boundary control of semilinear parabolic equations. I. Problems with no state constraints. Appl. Math. Optim. 45 (2002), 125-143. DOI 10.1007/s00245-001-0035-5 | MR 1874072 | Zbl 1005.49016
[4] Arioli, M., Loghin, D.: Discrete interpolation norms with applications. SIAM J. Numer. Anal. 47 (2009), 2924-2951. DOI 10.1137/080729360 | MR 2551152 | Zbl 1196.65080
[5] Axelsson, O., Béreš, M., Blaheta, R.: Computational methods for boundary optimal control and identification problems. Math. Comput. Simul. 189 (2021), 276-290. DOI 10.1016/j.matcom.2021.02.019 | MR 4297868 | Zbl 1540.65110
[6] Behrndt, J., Gesztesy, F., Mitrea, M.: Sharp Boundary Trace Theory and Schrödinger Operators on Bounded Lipschitz Domains. Memoirs of the American Mathematical Society 307. AMS, Providence (2025). DOI 10.1090/memo/1550 | MR 4876779 | Zbl 08028545
[7] Behrndt, J., Micheler, T.: Elliptic differential operators on Lipschitz domains and abstract boundary value problems. J. Funct. Anal. 267 (2014), 3657-3709. DOI 10.1016/j.jfa.2014.09.017 | MR 3266243 | Zbl 1300.35026
[8] Belgacem, F. Ben, Fekih, H. El, Metoui, H.: Singular perturbations for the Dirichlet boundary control of elliptic problems. M2AN, Math. Model. Numer. Anal. 37 (2003), 833-850. DOI 10.1051/m2an:2003057 | MR 2020866 | Zbl 1051.49012
[9] Berggren, M.: Approximations of very weak solutions to boundary-value problems. SIAM J. Numer. Anal. 42 (2004), 860-877. DOI 10.1137/S0036142903382048 | MR 2084239 | Zbl 1159.65355
[10] Braess, D., Peisker, P.: On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning. IMA J. Numer. Anal. 6 (1986), 393-404. DOI 10.1093/imanum/6.4.393 | MR 0968266 | Zbl 0616.65108
[11] Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput. 50 (1988), 1-17. DOI 10.1090/S0025-5718-1988-0917816-8 | MR 0917816 | Zbl 0643.65017
[12] Brenner, S. C., Sung, L.-Y.: A new error analysis for finite element methods for elliptic Neumann boundary control problems with pointwise control constraints. Results Appl. Math. 25 (2025), Article ID 100544, 13 pages. DOI 10.1016/j.rinam.2025.100544 | MR 4854724 | Zbl 08018243
[13] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Franc. Automat. Inform. Rech. Operat. 8 (1974), 129-151. DOI 10.1051/m2an/197408R201291 | MR 0365287 | Zbl 0338.90047
[14] Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993), 993-1006. DOI 10.1137/0331044 | MR 1227543 | Zbl 0798.49020
[15] Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45 (2006), 1586-1611. DOI 10.1137/050626600 | MR 2272157 | Zbl 1123.65061
[16] Chowdhury, S., Gudi, T., Nandakumaran, A. K.: Error bounds for a Dirichlet boundary control problem based on energy spaces. Math. Comput. 86 (2017), 1103-1126. DOI 10.1090/mcom/3125 | MR 3614013 | Zbl 1359.65098
[17] Ciarlet, P. G., Raviart, P. A.: A mixed finite element method for the biharmonic equation. Mathematical Aspects of Finite Elements in Partial Differential Equations Academic Press, New York (1974), 125-145. DOI 10.1016/B978-0-12-208350-1.50009-1 | MR 0657977 | Zbl 0337.65058
[18] Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48 (2009), 2798-2819. DOI 10.1137/080735369 | MR 2558321 | Zbl 1203.49043
[19] Fursikov, A. V., Gunzburger, M. D., Hou, L. S.: Boundary value problems and optimal boundary control for the Navier-Stokes system: The two-dimensional case. SIAM J. Control Optim. 36 (1998), 852-894. DOI 10.1137/S0363012994273374 | MR 1613873 | Zbl 0910.76011
[20] Gangl, P., Löscher, R., Steinbach, O.: Regularization and finite element error estimates for elliptic distributed optimal control problems with energy regularization and state or control constraints. Comput. Math. Appl. 180 (2025), 242-260. DOI 10.1016/j.camwa.2024.12.021 | MR 4849816 | Zbl 07979088
[21] Glowinski, R., Pironneau, O.: Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979), 167-212. DOI 10.1137/1021028 | MR 0524511 | Zbl 0427.65073
[22] Gräser, C., Kornhuber, R.: Multigrid methods for obstacle problems. J. Comput. Math. 27 (2009), 1-44. MR 2493556 | Zbl 1199.65401
[23] Gunzburger, M. D., Hou, L., Svobodny, T. P.: Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30 (1992), 167-181. DOI 10.1137/0330011 | MR 1145711 | Zbl 0756.49004
[24] Hintermüller, M., Hinze, M.: Moreau-Yosida regularization in state constrained elliptic control problems: Error estimates and parameter adjustment. SIAM J. Numer. Anal. 47 (2009), 1666-1683. DOI 10.1137/080718735 | MR 2505869 | Zbl 1191.49036
[25] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003), 865-888. DOI 10.1137/S1052623401383558 | MR 1972219 | Zbl 1080.90074
[26] Hinze, M., Kunisch, K.: Second order methods for boundary control of the instationary Navier-Stokes system. ZAMM, Z. Angew. Math. Mech. 84 (2004), 171-187. DOI 10.1002/zamm.200310094 | MR 2038338 | Zbl 1042.35047
[27] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications 23. Springer, Dordrecht (2009). DOI 10.1007/978-1-4020-8839-1 | MR 2516528 | Zbl 1167.49001
[28] John, L., Steinbach, O.: Schur complement preconditioners for the biharmonic Dirichlet boundary value problem. Berichte aus dem Institut für Numerische Mathematik. Bericht 2013/4 Technische Universität Graz, Graz (2013), 16 pages.
[29] Jung, M., Langer, U., Meyer, A., Queck, W., Schneider, M.: Multigrid preconditioners and their applications. Third Multigrid Seminar (Biesenthal, 1988) Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, Berlin (1989), 11-52. MR 1004014 | Zbl 0699.65076
[30] Kunisch, K., Vexler, B.: Constrained Dirichlet boundary control in $L^2$ for a class of evolution equations. SIAM J. Control Optim. 46 (2007), 1726-1753. DOI 10.1137/060670110 | MR 2361991 | Zbl 1144.49003
[31] Kunoth, A.: Adaptive wavelet schemes for an elliptic control problem with Dirichlet boundary control. Numer. Algorithms 39 (2005), 199-220. DOI 10.1007/s11075-004-3630-0 | MR 2137752 | Zbl 1069.65069
[32] Langer, U.: Zur numerischen Lösung des ersten biharmonischen Randwertproblems. Numer. Math. 50 (1986), 291-310 German. DOI 10.1007/BF01390707 | MR 0871231 | Zbl 0597.65081
[33] Langer, U., Löscher, R., Steinbach, O., Yang, H.: Mass-lumping discretization and solvers for distributed elliptic optimal control problems. Numer. Linear Algebra Appl. 31 (2024), Article ID e2564, 22 pages. DOI 10.1002/nla.2564 | MR 4804322 | Zbl 07953722
[34] Langer, U., Löscher, R., Steinbach, O., Yang, H.: State-based nested iteration solution of optimal control problems with PDE constraints. Math. Control Relat. Fields 15 (2025), 1496-1537. DOI 10.3934/mcrf.2025043 | MR 4956351 | Zbl 8109478
[35] Lasiecka, I., Malanowski, K.: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybern. 7 (1978), 21-36. MR 0484630 | Zbl 0459.49022
[36] Liang, D., Gong, W., Xie, X.: A new error analysis for parabolic Dirichlet boundary control problems. ESAIM, Math. Model. Numer. Anal. 59 (2025), 749-787. DOI 10.1051/m2an/2025006 | MR 4882763 | Zbl 08028637
[37] Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Grundlehren der mathematischen Wissenschaften 170. Springer, Berlin (1971). DOI 10.1007/978-3-642-65024-6 | MR 0271512 | Zbl 0203.09001
[38] Mardal, K.-A., Nielsen, B. F., Nordaas, M.: Robust preconditioners for PDE-constrained optimization with limited observations. BIT 57 (2017), 405-431. DOI 10.1007/s10543-016-0635-8 | MR 3651085 | Zbl 1368.65099
[39] May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51 (2013), 2585-2611. DOI 10.1137/080735734 | MR 3070527 | Zbl 1273.65087
[40] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). MR 1742312 | Zbl 0948.35001
[41] McLean, W., Steinbach, O.: Boundary element preconditioners for a hypersingular integral equation on an interval. Adv. Comput. Math. 11 (1999), 271-286. DOI 10.1023/A:1018944530343 | MR 1732138 | Zbl 0951.65145
[42] Of, G., Phan, T. X., Steinbach, O.: An energy space finite element approach for elliptic Dirichlet boundary control problems. Numer. Math. 129 (2015), 723-748. DOI 10.1007/s00211-014-0653-x | MR 3317816 | Zbl 1311.49069
[43] Peisker, P.: On the numerical solution of the first biharmonic equation. RAIRO Modélisation Math. Anal. Numér. 22 (1988), 655-676. DOI 10.1051/m2an/1988220406551 | MR 0974292 | Zbl 0661.65112
[44] Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics 23. Springer, Berlin (1994). DOI 10.1007/978-3-540-85268-1 | MR 1299729 | Zbl 0803.65088
[45] Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1999). DOI 10.1093/oso/9780198501787.001.0001 | MR 1857663 | Zbl 0931.65118
[46] Ruge, J., Stüben, K.: Algebraic multigrid. Multigrid Methods Frontiers in Applied Mathematics. SIAM, Philadelphia (1987), 73-130. DOI 10.1137/1.9781611971057.ch4 | MR 0972756 | Zbl 0659.65094
[47] Simoncini, V., Szyld, D. B.: Theory of inexact Krylov subspace methods and application to scientific computing. SIAM J. Sci. Comput. 25 (2003), 457-477. DOI 10.1137/S1064827502406415 | MR 2058070 | Zbl 1048.65032
[48] Steinbach, O.: On the stability of the $L^2$ projection in fractional Sobolev spaces. Numer. Math. 88 (2001), 367-379. DOI 10.1007/PL00005449 | MR 1826858 | Zbl 0989.65124
[49] Steinbach, O.: On a generalized $L^2$ projection and some related stability estimates in Sobolev spaces. Numer. Math. 90 (2002), 775-786. DOI 10.1007/s002110100329 | MR 1888838 | Zbl 0997.65120
[50] Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer, New York (2008). DOI 10.1007/978-0-387-68805-3 | MR 2361676 | Zbl 1153.65302
[51] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics 112. AMS, Providence (2010). DOI 10.1090/gsm/112 | MR 2583281 | Zbl 1195.49001
[52] Winkler, M.: Error estimates for variational normal and Dirichlet control problems with energy regularization. Numer. Math. 144 (2020), 413-445. DOI 10.1007/s00211-019-01091-1 | MR 4057429 | Zbl 1433.49048
[53] Zhang, S., Xu, J.: Optimal solvers for fourth-order PDEs discretized on unstructured grids. SIAM J. Numer. Anal. 52 (2014), 282-307. DOI 10.1137/120878148 | MR 3162408 | Zbl 1293.65160
Partner of
EuDML logo