[3] Arnold, D. N., Falk, R. S., Gopalakrishnan, J.:
Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions. Math. Models Methods Appl. Sci. 22 (2012), Article ID 1250024, 26 pages.
DOI 10.1142/S0218202512500248 |
MR 2974162 |
Zbl 1260.65100
[4] Arnold, D. N., Falk, R. S., Winther, R.:
Differential complexes and stability of finite element methods. II. The elasticity complex. Compatible Spatial Discretizations The IMA Volumes in Mathematics and Its Applications 142. Springer, New York (2006), 47-67.
DOI 10.1007/0-387-38034-5_3 |
MR 2249345 |
Zbl 1119.65399
[8] Veiga, L. Beirão da, Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., Russo, A.:
Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013), 199-214.
DOI 10.1142/S0218202512500492 |
MR 2997471 |
Zbl 1416.65433
[10] Bonaldi, F., Pietro, D. A. Di, Droniou, J., Hu, K.:
An exterior calculus framework for polytopal methods. (to appear) in J. Eur. Math. Soc. (JEMS).
DOI 10.4171/JEMS/1602
[11] Boon, W. M., Holmen, D. F., Nordbotten, J. M., Vatne, J. E.:
The Hodge-Laplacian on the Čech-de Rham complex governs coupled problems. J. Math. Anal. Appl. 551 (2025), Article ID 129692, 16 pages.
DOI 10.1016/j.jmaa.2025.129692 |
MR 4912322 |
Zbl 08064044
[12] Boon, W. M., Kuchta, M., Mardal, K.-A., RuiBaier, R.:
Robust preconditioners for perturbed saddle-point problems and conservative discretizations of Biot's equations utilizing total pressure. SIAM J. Sci. Comput. 43 (2021), B961--B983.
DOI 10.1137/20M1379708 |
MR 4295052 |
Zbl 07379628
[21] Geuzaine, C., Remacle, J.-F.:
Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009), 1309-1331.
DOI 10.1002/nme.2579 |
MR 2566786 |
Zbl 1176.74181
[23] Hong, Q., Kraus, J., Kuchta, M., Lymbery, M., Mardal, K.-A., Rognes, M. E.:
Robust approximation of generalized Biot-Brinkman problems. J. Sci. Comput. 93 (2022), Article ID 77, 28 pages.
DOI 10.1007/s10915-022-02029-w |
MR 4507134 |
Zbl 1503.65231
[24] Hong, Q., Kraus, J., Lymbery, M., Philo, F.:
A new practical framework for the stability analysis of perturbed saddle-point problems and applications. Math. Comput. 92 (2023), 607-634.
DOI 10.1090/mcom/3795 |
MR 4524104 |
Zbl 1504.65203
[25] Kraus, J., Lederer, P. L., Lymbery, M., Osthues, K., Schöberl, J.:
Hybridized discontinuous Galerkin/hybrid mixed methods for a multiple network poroelasticity model with application in biomechanics. SIAM J. Sci. Comput. 45 (2023), B802--B827.
DOI 10.1137/22M149764X |
MR 4669845 |
Zbl 1550.76156
[30] Raviart, P.-A., Thomas, J.-M.:
A mixed finite element method for 2nd order elliptic problems. Mathematical Aspects of Finite Element Methods Lecture Notes in Mathematics 606. Springer, Berlin (1977), 292-315.
DOI 10.1007/BFb0064470 |
MR 0483555 |
Zbl 0362.65089
[31] Savostianov, A., Tudisco, F., Guglielmi, N.:
Cholesky-like preconditioner for Hodge Laplacians via heavy collapsible subcomplex. SIAM J. Matrix Anal. Appl. 45 (2024), 1827-1849.
DOI 10.1137/23M1626396 |
MR 4805864 |
Zbl 1550.65043