| Title: | Efficient Karhunen-Loève expansions via Legendre-Galerkin discretization and tensor structure (English) |
| Author: | Béreš, Michal |
| Language: | English |
| Journal: | Applications of Mathematics |
| ISSN: | 0862-7940 (print) |
| ISSN: | 1572-9109 (online) |
| Volume: | 70 |
| Issue: | 6 |
| Year: | 2025 |
| Pages: | 941-991 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We develop an efficient framework for Karhunen-Loève expansions of isotropic Gaussian random fields on hyper-rectangular domains. The approach approximates the covariance kernel by a positive mixture of squared-exponentials, fitted via Newton optimization with a theoretically informed initialization; we also provide convergence estimates for this Gaussian-mixture approximation. The resulting separable kernel enables a Legendre-Galerkin discretization with a Kronecker product structure across dimensions, together with submatrices exhibiting even/odd parity. For assembly, we employ a Duffy-type transformation followed by Gaussian quadrature. These structural properties substantially reduce memory usage and arithmetic cost compared with naive formulations. All algorithms and numerical experiments are released in an open-source repository that reproduces every figure and table. For completeness, a concise derivation of the three-term recurrence for Legendre polynomials is included in appendix. (English) |
| Keyword: | Karhunen-Loève expansion |
| Keyword: | Legendre-Galerkin basis |
| Keyword: | separable covariance |
| Keyword: | Gaussian-mixture approximation |
| Keyword: | tensor structure |
| MSC: | 42C05 |
| MSC: | 60G15 |
| MSC: | 60G60 |
| MSC: | 65D30 |
| MSC: | 65F15 |
| DOI: | 10.21136/AM.2025.0163-25 |
| . | |
| Date available: | 2025-12-20T07:03:50Z |
| Last updated: | 2025-12-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153230 |
| . | |
| Reference: | [1] Abramowitz, M., (Eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.Dover, New York (1965). Zbl 0171.38503, MR 0167642 |
| Reference: | [2] Adler, R. J., Taylor, J. E.: Random Fields and Geometry.Springer Monographs in Mathematics. Springer, New York (2007). Zbl 1149.60003, MR 2319516, 10.1007/978-0-387-48116-6 |
| Reference: | [3] Azevedo, J. S., Wisniewski, F., Oliveira, S. P.: A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen-Loève expansion.Comput. Appl. Math. 37 (2018), 1825-1846. Zbl 1563.65504, MR 3804154, 10.1007/s40314-017-0422-4 |
| Reference: | [4] Basmaji, A. A., Dannert, M. M., Nackenhorst, U.: Implementation of Karhunen-Loève expansion using discontinuous Legendre polynomial-based Galerkin approach.Prob. Eng. Mech. 67 (2022), Article ID 103176, 10 pages. 10.1016/j.probengmech.2021.103176 |
| Reference: | [5] Beran, J.: Statistics for Long-Memory Processes.Monographs on Statistics and Applied Probability 61. Chapman & Hall, New York (1994). Zbl 0869.60045, MR 1304490, 10.1201/9780203738481 |
| Reference: | [6] Béreš, M.: Karhunen-Loève decomposition of isotropic Gaussian random fields using a tensor approximation of autocovariance kernel.High Performance Computing in Science and Engineering Lecture Notes in Computer Science 11087. Springer, Cham (2018), 188-202. 10.1007/978-3-319-97136-0_14 |
| Reference: | [7] Béreš, M.: Methods for the Solution of Differential Equations with Uncertainties in Parameters: Ph.D. Thesis.VŠB-Technical University Ostrava, Ostrava (2023), Available at http://hdl.handle.net/10084/151354\kern0pt. |
| Reference: | [8] Betz, W., Papaioannou, I., Straub, D.: Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion.Comput. Methods Appl. Mech. Eng. 271 (2014), 109-129. Zbl 1296.65191, MR 3162666, 10.1016/j.cma.2013.12.010 |
| Reference: | [9] Chihara, T. S.: An Introduction to Orthogonal Polynomials.Mathematics and Its Applications 13. Gordon and Breach, New York (1978). Zbl 0389.33008, MR 0481884 |
| Reference: | [10] Chilès, J.-P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty.Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken (2012). Zbl 1256.86007, MR 1679557, 10.1002/9781118136188 |
| Reference: | [11] Christakos, G.: Random Field Models in Earth Sciences.Academic Press, San Diego (1992). 10.1016/C2009-0-22238-0 |
| Reference: | [12] Conway, J. B.: A Course in Functional Analysis.Graduate Texts in Mathematics 96. Springer, New York (1990). Zbl 0706.46003, MR 1070713, 10.1007/978-1-4757-4383-8 |
| Reference: | [13] Freeze, A. R.: A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media.Water Resources Research 11 (1975), 725-741. 10.1029/WR011i005p00725 |
| Reference: | [14] Gautschi, W.: Orthogonal Polynomials: Computation and Approximation.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004). Zbl 1130.42300, MR 2061539, 10.1093/oso/9780198506720.001.0001 |
| Reference: | [15] Ghanem, R. G., Spanos, P. D.: Stochastic Finite Elements: A Spectral Approach.Springer, New York (1991). Zbl 0722.73080, MR 1083354, 10.1007/978-1-4612-3094-6 |
| Reference: | [16] Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect.SIAM Rev. 46 (2004), 269-282. Zbl 1062.60053, MR 2114455, 10.1137/S0036144501394387 |
| Reference: | [17] Golub, G. H., Loan, C. F. Van: Matrix Computations.Johns Hopkins University Press, Baltimore (2013). Zbl 1268.65037, MR 3024913 |
| Reference: | [18] Golub, G. H., Welsch, J. H.: Calculation of Gauss quadrature rules.Math. Comput. 23 (1969), 221-230. Zbl 0179.21901, MR 0245201, 10.1090/S0025-5718-69-99647-1 |
| Reference: | [19] Huang, S. P., Quek, S. T., Phoon, K. K.: Convergence study of the truncated Karhunen-Loève expansion for simulation of stochastic processes.Int. J. Numer. Methods Eng. 52 (2001), 1029-1043. Zbl 0994.65004, 10.1002/nme.255 |
| Reference: | [20] Kreyszig, E.: Introductory Functional Analysis with Applications.John Wiley & Sons, New York (1989). Zbl 0706.46001, MR 0992618 |
| Reference: | [21] Lawson, C. L., Hanson, R. J.: Solving Least Squares Problems.Classics in Applied Mathematics 15. SIAM, Philadelphia (1995). Zbl 0860.65029, MR 1349828, 10.1137/1.9781611971217 |
| Reference: | [22] Liu, Q., Zhang, X.: A Chebyshev polynomial-based Galerkin method for the discretization of spatially varying random properties.Acta Mech. 228 (2017), 2063-2081. Zbl 1369.65166, MR 3654157, 10.1007/s00707-017-1819-2 |
| Reference: | [23] Loève, M.: Probability Theory. II.Graduate Texts in Mathematics 46. Springer, New York (1978). Zbl 0385.60001, MR 0651018 |
| Reference: | [24] Mika, M. L., Hughes, T. J. R., Schillinger, D., Wriggers, P., Hiemstra, R. R.: A matrix-free isogeometric Galerkin method for Karhunen-Loève approximation of random fields using tensor product splines, tensor contraction and interpolation based quadrature.Comput. Methods Appl. Mech. Eng. 379 (2021), Article ID 113730, 32 pages. Zbl 1506.74419, MR 4232582, 10.1016/j.cma.2021.113730 |
| Reference: | [25] Oliveira, S. P., Azevedo, J. S.: Spectral element approximation of Fredholm integral eigenvalue problems.J. Comput. Appl. Math. 257 (2014), 46-56. Zbl 1294.65115, MR 3107405, 10.1016/j.cam.2013.08.016 |
| Reference: | [26] Rahman, S.: A Galerkin isogeometric method for Karhunen-Loève approximation of random fields.Comput. Methods Appl. Mech. Eng. 338 (2018), 533-561. Zbl 1440.65228, MR 3811637, 10.1016/j.cma.2018.04.026 |
| Reference: | [27] Rasmussen, C. E., Williams, C. K. I.: Gaussian Processes for Machine Learning.MIT Press, Cambridge (2006). Zbl 1177.68165, MR 2514435, 10.7551/mitpress/3206.001.0001 |
| Reference: | [28] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. 1. Functional Analysis.Academic Press, New York (1980). Zbl 0459.46001, MR 0751959 |
| Reference: | [29] Rudin, W.: Principles of Mathematical Analysis.International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1976). Zbl 0346.26002, MR 0385023 |
| Reference: | [30] Schoenberg, I. J.: Metric spaces and completely monotone functions.Ann. Math. (2) 39 (1938), 811-841. Zbl 0019.41503, MR 1503439, 10.2307/1968466 |
| Reference: | [31] Stein, M. L.: Interpolation of Spatial Data: Some Theory for Kriging.Springer Series in Statistics. Springer, New York (1999). Zbl 0924.62100, MR 1697409, 10.1007/978-1-4612-1494-6 |
| Reference: | [32] Szegő, G.: Orthogonal Polynomials.American Mathematical Society Colloquium Publications 23. AMS, Providence (1975). Zbl 0305.42011, MR 0372517, 10.1090/coll/023 |
| Reference: | [33] Trefethen, L. N.: Approximation Theory and Approximation Practice.Other Titles in Applied Mathematics 164. SIAM, Philadelphia (2020). Zbl 1437.41001, MR 4050406, 10.1137/1.9781611975949 |
| Reference: | [34] Wendland, H.: Scattered Data Approximation.Cambridge Monographs on Applied and Computational Mathematics 17. Cambridge University Press, Cambridge (2005). Zbl 1075.65021, MR 2131724, 10.1017/CBO9780511617539 |
| Reference: | [35] Widder, D. V.: The Laplace Transform.Princeton Mathematical Series 6. Princeton University Press, Princeton (1941). Zbl 0063.08245, MR 0005923, 10.1515/9781400876457 |
| Reference: | [36] Xie, H., Zhou, T.: A multilevel finite element method for Fredholm integral eigenvalue problems.J. Comput. Phys. 303 (2015), 173-184. Zbl 1349.65724, MR 3422706, 10.1016/j.jcp.2015.09.043 |
| . |
Fulltext not available (moving wall 24 months)