Previous |  Up |  Next

Article

Title: General Nijenhuis tensor: an example of a secondary invariant (English)
Author: Studený, Václav
Language: English
Journal: Proceedings of the Winter School "Geometry and Physics"
Volume:
Issue: 1994
Year:
Pages: [133]-141
.
Category: math
.
Summary: The author considers the Nijenhuis map assigning to two type (1,1) tensor fields $\alpha$, $\beta$ a mapping $$\langle \alpha, \beta\rangle : (\xi, \zeta) \mapsto [\alpha(\xi), \beta(\zeta)] + \alpha \circ \beta ([\xi, \zeta]) - \alpha([\xi, \beta(\zeta)]) - \beta([\alpha(\xi), \zeta)]),$$ where $\xi$, $\zeta$ are vector fields. Then $\langle \alpha, \beta\rangle$ is a type (2,1) tensor field (Nijenhuis tensor) if and only if $[\alpha, \beta] = 0$. Considering a smooth manifold $X$ with a smooth action of a Lie group, a secondary invariant may be defined as a mapping whose area of invariance is restricted to the inverse image of an invariant subset of $X$ under another invariant mapping. The author recognizes a secondary invariant related to the above Nijenhuis tensor and gives a complete list of all secondary invariants of similar type. In this way he proves that all bilinear natural operators transforming commuting pairs of type (1,1) tensor fields to type (2,1)! (English)
MSC: 53A55
MSC: 58A20
idZBL: Zbl 0853.58007
idMR: MR1396608
.
Date available: 2009-07-13T21:35:15Z
Last updated: 2012-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/701570
.

Files

Files Size Format View
WSGP_14-1994-1_10.pdf 631.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo