Previous |  Up |  Next


Title: Natural operators lifting functions to cotangent bundles of linear higher order tangent bundles (English)
Author: Mikulski, W. M.
Language: English
Journal: Proceedings of the 15th Winter School "Geometry and Physics"
Issue: 1995
Pages: [199]-206
Category: math
Summary: The author studies the problem how a map $L:M\to\bbfR$ on an $n$-dimensional manifold $M$ can induce canonically a map $A_M(L):T^* T^{(r)}M\to \bbfR$ for $r$ a fixed natural number. He proves the following result: ``Let $A: T^{(0,0)}\to T^{(0,0)}(T^* T^{(r)})$ be a natural operator for $n$-manifolds. If $n\ge 3$ then there exists a uniquely determined smooth map $H: \bbfR^{S(r)}\times \bbfR\to\bbfR$ such that $A= A^{(H)}$.''\par The conclusion is that all natural functions on $T^* T^{(r)}$ for $n$-manifolds $(n\ge 3)$ are of the form $\{H\circ(\lambda^{\langle 0,1\rangle}_M,\dots, \lambda^{\langle r,0\rangle}_M)\}$, where $H\in C^\infty(\bbfR^r)$ is a function of $r$ variables. (English)
MSC: 53A55
MSC: 58A20
idZBL: Zbl 0909.58002
idMR: MR1463522
Date available: 2009-07-13T21:36:53Z
Last updated: 2012-09-18
Stable URL:


Files Size Format View
WSGP_15-1995-1_16.pdf 456.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo