Title: | Symmetrization of brace algebra (English) |
Author: | Daily, Marilyn |
Author: | Lada, Tom |
Language: | English |
Journal: | Proceedings of the 25th Winter School "Geometry and Physics" |
Volume: | |
Issue: | 2005 |
Year: | |
Pages: | [75]-86 |
. | |
Category: | math |
. | |
Summary: | Summary: We show that the symmetrization of a brace algebra structure yields the structure of a symmetric brace algebra. We also show that the symmetrization of the natural brace structure on $\bigoplus_{k\ge 1}\operatorname{Hom}(V^{\otimes k},V)$ coincides with the natural symmetric brace structure on $\bigoplus_{k\ge 1}\operatorname{Hom}(V^{\otimes k},V)^{as}$, the direct sum of spaces of antisymmetric maps $V^{\otimes k}\to V$. (English) |
MSC: | 16-99 |
MSC: | 16E40 |
MSC: | 18D50 |
idZBL: | Zbl 1162.18302 |
idMR: | MR2287127 |
. | |
Date available: | 2009-07-13T21:54:37Z |
Last updated: | 2012-09-18 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/701767 |
. |
Files | Size | Format | View |
---|---|---|---|
WSGP_25-2005-1_6.pdf | 1.008Mb | application/pdf |
View/ |