Previous |  Up |  Next

Article

Title: Recent developments concerning entropy and approximation numbers (English)
Author: Edmunds, David E.
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 5
Issue: 1994
Year:
Pages: 33-76
.
Category: math
.
MSC: 35P20
MSC: 46E35
MSC: 47B06
idZBL: Zbl 0831.47014
idMR: MR1322309
.
Date available: 2009-10-08T09:44:44Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702461
.
Reference: [1] Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives.Ann. of Math. 128 (1988), 385–398. Zbl 0672.31008, MR 0960950
Reference: [2] Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems.Comm. Pure Appl. Math. 15 (1962), 119–147. Zbl 0109.32701, MR 0147774
Reference: [3] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions.Comm. Pure Appl. Math. 12 (1959), 623–727. Zbl 0093.10401, MR 0125307
Reference: [4] Bennett, C., Rudnick, K.: On Lorentz-Zygmund spaces.Dissertationes Math. 175 (1980), 1–72. Zbl 0456.46028, MR 0576995
Reference: [5] Bennett, C., Sharpley, R.: Interpolation of operators.Academic Press, New York, 1988. Zbl 0647.46057, MR 0928802
Reference: [6] Birman, M.S., Karadzhov, G.E., Solomyak, M.Z.: Boundedness conditions and spectrum estimates for the operators $b(X)a(D)$ and their analogs.Adv. in Soviet Math. 7 (1991), 85–106. Zbl 0768.47025, MR 1306510
Reference: [7] Birman, M.S., Solomyak, M.Z.: Piecewise polynomial approximations of functions of the classes $W_p^\alpha $.Mat. Sb. 73 (1967), 331–355. MR 0217487
Reference: [8] Birman, M.S., Solomyak, M.Z.: Spectral asymptotics of non-smooth elliptic operators, I.Trans. Moscow Math. Soc. 27 (1972), 1–52. MR 1157648
Reference: [9] Birman, M.S., Solomyak, M.Z.: Spectral asymptotics of non-smooth elliptic operators, II.Trans. Moscow Math. Soc. 28 (1973), 1–32. MR 1157648
Reference: [10] Birman, M.S., Solomyak, M.Z.: Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory.10th Math. School Kiev 1974, pp. 5–189. Zbl 0426.46020, MR 0562305
Reference: [11] Birman, M.S., Solomyak, M.Z.: The asymptotics of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols, I, II.Vestnik Leningrad Univ. Mat. 13 (1977), 13–21. (Russian)
Reference: [12] Birman, M.S., Solomyak, M.Z.: Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations.Adv. in Soviet Math. 7 (1991), 1–55. MR 1306507
Reference: [13] Bourgain, J., Pajor, A., Szarek, S.J., Tomczak, N. -Jaegerman: On the duality problem for entropy numbers of operators.Geometric aspects of functional analysis (1987–88), Lecture Notes in Mathematics, Vol. 1376, Springer, Berlin, 1989, pp. 50–63. MR 1008716
Reference: [14] Carl, B.: Entropy numbers, $s$-numbers and eigenvalue problems.J. Funct. Anal. 41 (1981), 290–306. Zbl 0466.41008, MR 0619953
Reference: [15] Carl, B.: Entropy numbers of embedding maps between Besov spaces with an application to eigenvalue problems.Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 63–70. Zbl 0508.47041, MR 0636064
Reference: [16] Carl, B., Stephani, I.: Entropy, compactness and the approximation of operators.Cambridge University Press, Cambridge, 1990. Zbl 0705.47017, MR 1098497
Reference: [17] Carl, B., Triebel, H.: Inequalities between eigenvalues, entropy numbers and related quantities in Banach spaces.Math. Ann. 251 (1980), 129–133. MR 0585959
Reference: [18] Cobos, F., Edmunds, D.E.: Clarkson’s inequalities, Besov spaces and Triebel–Sobolev spaces.Z. Anal. Anwendungen 7 (1988), 229–232. Zbl 0663.46026, MR 0951121
Reference: [19] Cobos, F., Edmunds, D.E., Potter, A.J.B.: Real interpolation and compact linear operators.J. Funct. Anal. 88 (1990), 351–365. Zbl 0704.46049, MR 1038446
Reference: [20] Cobos, F., Fernandez, D.L.: On interpolation of compact operators.Ark. Mat. 27 (1989), 211–217. Zbl 0691.46047, MR 1022277
Reference: [21] Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators.Ann. of Math. 106 (1977), 93–100. Zbl 0362.47006, MR 0473576
Reference: [22] Cwikel, M.: Real and complex interpolation and extrapolation of compact operators.Technion, Haifa, 1990, preprint. MR 1150590
Reference: [23] Edmunds, D.E., Evans, W.D.: Spectral theory and differential operators.Oxford University Press, Oxford, 1987. Zbl 0628.47017, MR 0929030
Reference: [24] Edmunds, D.E., Evans, W.D., Harris, D.J.: Approximation numbers of certain Volterra integral operators.J. London Math. Soc. 37 (1988), no. 2, 471–489. Zbl 0658.47049, MR 0939123
Reference: [25] Edmunds, D.E., Gurka, P., Pick, L.: Compactness of Hardy-type integral operators in weighted Banach function spaces.Studia Math. 109 (1994), 73–90. Zbl 0821.46036, MR 1267713
Reference: [26] Edmunds, D.E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalised Lorentz–Zygmund spaces.to appear. MR 1336431
Reference: [27] Edmunds, D.E., Ilyin, A.A.: On some multiplicative inequalities and approximation numbers.Quart. J. Math. Oxford 45 (1994), 159–179. Zbl 0818.46027, MR 1280691
Reference: [28] Edmunds, D.E., Ilyin, A.A.: Approximation numbers of embeddings of Sobolev spaces.to appear. Zbl 0841.46022, MR 1376290
Reference: [29] Edmunds, D.E., Krbec, M.: Two limiting cases of Sobolev imbeddings.to appear. Zbl 0835.46027, MR 1331250
Reference: [30] Edmunds, D.E., Stepanov, V.D.: The measure of non-compactness and approximation numbers of certain Volterra integral operators.Math. Ann. 298 (1994), 41–66. Zbl 0788.45013, MR 1252816
Reference: [31] Edmunds, D.E., Triebel, H.: Entropy numbers and approximation numbers in function spaces.Proc. London Math. Soc. 58 (1989), no. 3, 137–152. Zbl 0629.46034, MR 0969551
Reference: [32] Edmunds, D.E., Triebel, H.: Entropy numbers and approximation numbers in function spaces, II.Proc. London Math. Soc. 64 (1992), no. 3, 153–169. Zbl 0778.46022, MR 1132858
Reference: [33] Edmunds, D.E., Triebel, H.: Eigenvalue distributions of some degenerate elliptic operators: an approach via entropy numbers.Math. Ann. 299 (1994), 311–340. Zbl 0804.35097, MR 1275771
Reference: [34] Edmunds, D.E., Triebel, H.: Logarithmic Sobolev spaces and their applications to spectral theory.Proc. London Math. Soc., to appear. Zbl 0835.46028, MR 1337470
Reference: [35] Edmunds, D.E., Triebel, H.: Function spaces, entropy numbers, differential operators.(forthcoming book). Zbl 1143.46001, MR 1410258
Reference: [36] Edmunds, D.E., Tylli, H.-O.: On the entropy numbers of an operator and its adjoint.Math. Nachr. 126 (1986), 231–239. Zbl 0625.47015, MR 0846577
Reference: [37] Edmunds, D.E., Tylli, H.-O.: Entropy numbers of tensor products of operators.Ark. Mat. 31 (1993), 247–274. Zbl 1047.47502, MR 1263554
Reference: [38] Frazier, M., Jawerth, B.: Decomposition of Besov spaces.Indiana Univ. Math. J. 34 (1985), 777–799. Zbl 0551.46018, MR 0808825
Reference: [39] Fusco, N., Lions, P.L., Sbordone, C.: Some remarks on Sobolev imbeddings in borderline cases.Preprint No. 25, Università degli Studi di Napoli ”Federico II”, 1993, pp. 7.
Reference: [40] Franke, J., Runst, Th.: Regular elliptic boundary value problems in Besov–Triebel–Lizorkin spaces.to appear. Zbl 0843.35026, MR 1349041
Reference: [41] Glushin, E.D.: Norms of random matrices and diameter of finite-dimensional sets.Mat. Sb. 120 (1983), 180–189. (Russian) MR 0687610
Reference: [42] Haroske, D.: Approximation numbers in weighted function spaces.to appear.
Reference: [43] Haroske, D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators I.Math. Nachr. 167 (1994), 131–156. Zbl 0829.46019, MR 1285311
Reference: [44] Haroske, D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators II.Math. Nachr. 168 (1994), 109–137. Zbl 0829.46020, MR 1282635
Reference: [45] König, H.: Eigenvalue distributions of compact operators.Birkhäuser, Basel, 1986. MR 0889455
Reference: [46] Lieb, E.W.: Bounds on the eigenvalues of the Laplace and Schrödinger operators.Bull. Amer. Math. Soc. 82 (1976), 751–753. Zbl 0329.35018, MR 0407909
Reference: [47] Linde, R.: $s$-numbers of diagonal operators and Besov embeddings.Proc. 13th Winter School, Suppl. Rend. Circ. Mat. Palermo 2 (1986), 83–110. MR 0894275
Reference: [48] Pietsch, A.: Operator ideals.North-Holland, Amsterdam, 1980. Zbl 0455.47032, MR 0582655
Reference: [49] Pietsch, A.: Eigenvalues and $s$-numbers.Cambridge University Press, Cambridge, 1987. Zbl 0615.47019, MR 0890520
Reference: [50] Rosenbljum, G.V.: The distribution of the discrete spectrum for singular differential operators.Soviet Math. Dokl. 13 (1972), 245–249.
Reference: [51] Rosenbljum, G.V.: Distribution of the discrete spectrum of singular differential operators.Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1976), 75–86. (Russian) MR 0430557
Reference: [52] Schechter, M. : Spectra of partial differential operators (2nd edition).North Holland, Amsterdam, 1986. MR 0869254
Reference: [53] Sickel, W., Triebel, H.: Hölder inequalities and sharp embeddings in function spaces of $B_{pq}^s$ and $F_{pq}^s$ type.to appear.
Reference: [54] Simon, B.: Analysis with weak trace ideals and the number of bound states of Schrödinger operators.Trans. Amer. Math. Soc. 224 (1976), 367–380. Zbl 0348.47017, MR 0423128
Reference: [55] Simon, B.: Trace ideals and their applications.Cambridge University Press, Cambridge, 1979. Zbl 0423.47001, MR 0541149
Reference: [56] Solomyak, M.Z.: Piecewise polynomial approximation of functions from $H^\ell ((0,1)^d)$, $2\ell =d,$ and applications to the spectral theory of the Schrödinger operator.Israel J. Math. 86 (1994), 253–275. MR 1276138
Reference: [57] Solomyak, M.Z.: Piecewise polynomial approximation of functions from Sobolev spaces, revisited.to appear. Zbl 0885.46033, MR 1423362
Reference: [58] Solomyak, M.Z.: Two-sided estimates on singular values for a class of integral operators on the semi-axis.to appear. Zbl 0817.47024
Reference: [59] Strichartz, R.S.: A note on Trudinger’s extension of Sobolev’s inequalities.Indiana Univ. Math. J. 21 (1972), 841–8. Zbl 0241.46028, MR 0293389
Reference: [60] Tashkian, G.M.: The classical formula of the asymptotics of the spectrum of elliptic equations, degenerate at the boundary of the domain.Mat. Zametki 30 (1981), no. 6, 871–880. (Russian) MR 0641661
Reference: [61] Triebel, H.: Interpolation theory, function spaces, differential operators.North-Holland, Amsterdam, 1978. Zbl 0387.46033, MR 0503903
Reference: [62] Triebel, H.: Theory of function spaces.Birkhäuser, Basel, 1983. Zbl 0546.46028, MR 0781540
Reference: [63] Triebel, H.: Theory of function spaces II.Birkhäuser, Basel, 1992. Zbl 0763.46025, MR 1163193
Reference: [64] Triebel, H.: Approximation numbers and entropy numbers of embeddings of fractional Besov–Sobolev spaces in Orlicz spaces.Proc. London Math. Soc. 66 (1993), 589–618. Zbl 0792.46024, MR 1207550
Reference: [65] Triebel, H.: Relations between approximation numbers and entropy numbers.to appear in J. Approx. Theory. Zbl 0811.47020, MR 1284581
Reference: [66] Triebel, H.: A localization property of $B_{pq}^s$ and $F_{pq}^s$ spaces.Studia Math. 109 (1994), 183–195. MR 1269775
Reference: [67] Triebel, H., Winkelvoss, H.: Intrinsic atomic characterizations of function spaces on domains.to appear. Zbl 0843.46022
Reference: [68] Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications.J. Math. Mech. 17 (1967), 473–483. Zbl 0163.36402, MR 0216286
.

Files

Files Size Format View
NAFSA_094-1994-1_5.pdf 510.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo