Previous |  Up |  Next

Article

MSC: 26-02, 26D15, 42B25
Keywords:
Brascamp–Lieb inequalities
Summary:
We discuss recent progress on issues surrounding the Brascamp–Lieb inequalities.
References:
[Ball] Ball K. M.: Volumes of sections of cubes and related problems. Geometric aspects of functional analysis (J. Lindenstrauss and V. D. Milman, eds.), Lecture Notes in Math. 1376, Springer, Heidelberg, 1989, pp. 251–260. Zbl 0674.46008, MR1008726 (90i:52019). MR 1008726 | Zbl 0674.46008
[Bar] Barthe F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134 (1998), no. 2, 335–361. Zbl 0901.26010, MR 99i:26021. DOI 10.1007/s002220050267 | MR 1650312 | Zbl 0901.26010
[Be] Beckner W.: Inequalities in Fourier analysis. Ann. Math. (2) 102 (1975), no. 1, 159–182. Zbl 0338.42017, MR 52 #6317. DOI 10.2307/1970980 | MR 0385456 | Zbl 0338.42017
[BCCT1] Bennett J. M., Carbery A., Christ M., Tao T.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. To appear in Geom. Funct. Anal. MR 2377493 | Zbl 1132.26006
[BCCT2] Bennett J. M., Carbery A., Christ M., Tao T.: Finite bounds for Hölder–Brascamp–Lieb multilinear inequalities. To appear in Math. Res. Lett. MR 2661170
[BCT] Bennett J. M., Carbery A., Tao T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196 (2006), no. 2, 261–302. Zbl pre05114945, MR 2007h:42019. DOI 10.1007/s11511-006-0006-4 | MR 2275834
[BL] Brascamp H. J., Lieb E. H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20 (1976), no. 2, 151–173. Zbl 0339.26020, MR 54 #492. DOI 10.1016/0001-8708(76)90184-5 | MR 0412366 | Zbl 0339.26020
[BLL] Brascamp H. J., Lieb E. H., Luttinger J. M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17 (1974), 227–237. Zbl 0286.26005, MR 49 #10835. DOI 10.1016/0022-1236(74)90013-5 | MR 0346109 | Zbl 0286.26005
[C] Calderón A. P.: An inequality for integrals. Studia Math. 57 (1976), no. 3, 275–277. Zbl 0343.26017, MR 54 #10531. MR 0422544 | Zbl 0343.26017
[CLL] Carlen E. A., Lieb E. H., Loss M.: A sharp analog of Young’s inequality on $S^N$ and related entropy inequalities. J. Geom. Anal. 14 (2004), no. 3,487–520. Zbl 1056.43002, MR 2005k:82046. DOI 10.1007/BF02922101 | MR 2077162
[F] Finner H.: A generalization of Hölder’s inequality and some probability inequalities. Ann. Probab. 20 (1992), no. 4, 1893–1901. Zbl 0761.60013, MR 93k:60047. DOI 10.1214/aop/1176989534 | MR 1188047 | Zbl 0761.60013
[L] Lieb E. H.: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102 (1990), no. 1, 179–208. Zbl 0726.42005, MR 91i:42014. DOI 10.1007/BF01233426 | MR 1069246 | Zbl 0726.42005
[LW] Loomis L. H., Whitney H.: An inequality related to the isoperimetric inequality. Bull. Amer. Math. Soc. 55 (1949), 961–962. Zbl 0035.38302, MR 11,166d. DOI 10.1090/S0002-9904-1949-09320-5 | MR 0031538 | Zbl 0035.38302
[V1] Valdimarsson S. I.: Two geometric inequalities. Ph.D. Thesis, University of Edinburgh, 2006.
[V2] Valdimarsson S. I.: Optimisers for the Brascamp–Lieb inequality. Preprint. MR 2448061 | Zbl 1159.26007
Partner of
EuDML logo