Previous |  Up |  Next

Article

Title: Non-Newtonian fluids and function spaces (English)
Author: Růžička, Michael
Author: Diening, Lars
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 8
Issue: 2006
Year:
Pages: 95-143
.
Category: math
.
Summary: In this note we give an overview of recent results in the theory of electrorheological fluids and the theory of function spaces with variable exponents. Moreover, we present a detailed and self-contained exposition of shifted $N$-functions that are used in the studies of generalized Newtonian fluids and problems with $p$-structure. (English)
Keyword: Electrorheological fluid
Keyword: generalized Newtonian fluids
Keyword: existence theory
Keyword: function spaces with variable exponents
Keyword: harmonic analysis
Keyword: Orlicz spaces
Keyword: shifted $N$-function
MSC: 35J60
MSC: 46E30
MSC: 76A05
MSC: 76D03
.
Date available: 2009-10-08T09:51:59Z
Last updated: 2013-10-18
Stable URL: http://hdl.handle.net/10338.dmlcz/702495
.
Reference: [1] Jdayil B. Abu,- Brunn P. O.: Effects of nonuniform electric field on slit flow of an electrorheological fluid.J. Rheol. 39 (1995), 1327–1341. 10.1122/1.550639
Reference: [2] Jdayil B. Abu,- Brunn P. O.: Effects of electrode morphology on the slit flow of an electrorheological fluid.J. Non-New. Fluid Mech. 63 (1996), 45–61. 10.1016/0377-0257(95)01416-0
Reference: [3] Jdayil B. Abu,- Brunn P. O.: Study of the flow behaviour of electrorheological fluids at shear- and flow- mode.Chem. Eng. and Proc. 36 (1997), 281–289.
Reference: [4] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I.Comm. Pure Appl. Math. 12 (1959), 623–727. Zbl 0093.10401, MR 23 #A2610. Zbl 0093.10401, MR 0125307, 10.1002/cpa.3160120405
Reference: [5] Bogovskii M. E.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium.Dokl. Akad. Nauk SSSR 248 (1979), 1037–1040. English transl. in Soviet Math. Dokl. 20 (1979), 1094–1098. Zbl 0499.35022, MR 82b:35135. MR 0553920
Reference: [6] Bogovskii M. E.: Solution of some problemsof vector analysis related to the operators $\operatorname{div}$ and $\operatorname{grad}$.Trudy Sem. S. L. Soboleva, no. 1, Akad. Nauk SSSR, Sibirsk. Otdel., Inst. Mat., Novosibirsk (1980), 5–40. MR 0631691
Reference: [7] Calderón A. P., Zygmund A.: On the existence of certain singular integrals.Acta Math. 88 (1952), 85–139. Zbl 0047.10201, MR 14,637f. MR 0052553, 10.1007/BF02392130
Reference: [8] Cianchi A.: Symmetrization in anisotropic elliptic problems.Preprint, 2006. Zbl 1219.35028, MR 2334829
Reference: [9] Uribe D. Cruz,- Fiorenza A., Martell J. M., Pérez C.: The boundedeness of classical operators on variable $L^p$ spaces.Ann. Acad. Sci. Fenn. Math. 31 (2004), no. 1, 239–264. Zbl 1100.42012, MR 2006m:42029.
Reference: [10] Uribe D. Cruz,- Fiorenza A., Neugebauer C. J.: The maximal function on variable $L^p$ spaces.Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238. Zbl 1037.42023, MR 2004c:42039. MR 1976842
Reference: [11] Diening L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot )}$.Math. Inequal. Appl. 7 (2004), 245–253. Zbl 1071.42014, MR 2005k:42048. MR 2057643
Reference: [12] Diening L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot )}$ and $W^{k,p(\cdot )}$.Math. Nachr. 268 (2004), 31–43. Zbl 1065.46024, MR 2005d:46071. MR 2054530
Reference: [13] Diening L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull. Sci. Math. 129 (2005), no. 8, 657–700. MR 2006e:46032. MR 2166733, 10.1016/j.bulsci.2003.10.003
Reference: [14] Diening L., Ebmeyer C., Růžička M.: Optimal convergence for the implicit space-time discretization of parabolic systems with $p$-structure.SIAM J. Numer. Anal. 45 (2007), no. 2, 457–472. MR2300281. Zbl 1140.65060, MR 2300281, 10.1137/05064120X
Reference: [15] Diening L., Ettwein F.: Fractional estimates for non-differentiable elliptic systems with general growth.Forum Math. (2006), accepted. Zbl 1188.35069, MR 2418205
Reference: [16] Diening L., Kreuzer C.: Linear convergence of an adaptive finite element method for the $p$-Laplacian equation.SIAM J. Numer. Anal. (2007), submitted. Zbl 1168.65060, MR 2383205
Reference: [17] Diening L., Málek J., Steinhauer M.: On Lipschitz truncations of sobolev functions (with variable exponent) and their selected applications.ESAIM, Control, Optim. Calc. Var. (2006), submitted. Zbl 1143.35037, MR 2394508
Reference: [18] Diening L., Růžička M.: Error estimates for interpolation operators in Orlicz-Sobolev spaces and quasi norms.Num. Math. (2007), DOI 10.1007/s00211-007-0079-9.
Reference: [19] Diening L., Růžička M.: Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics.J. Reine Angew. Math. 563 (2003), 197–220. Zbl 1072.76071, MR 2005g:42054. MR 2009242
Reference: [20] Diening L., Růžička M.: Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot )}$, Part I.J. Math. Anal. Appl. 298 (2004), 559–571. Zbl pre02107284, MR 2005k:47098a. Zbl 1128.47044, MR 2086975, 10.1016/j.jmaa.2004.05.048
Reference: [21] Diening L., Růžička M.: Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot )}$, Part II.J. Math. Anal. Appl. 298 (2004), 572–588. Zbl pre02107285, MR 2005k:47098b. Zbl 1128.47044, MR 2086976, 10.1016/j.jmaa.2004.05.049
Reference: [22] Donaldson T.: Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces.J. Differential Equations 10 (1971), 507–528. Zbl 0218.35028, MR 45 #7524. Zbl 0218.35028, MR 0298472, 10.1016/0022-0396(71)90009-X
Reference: [23] Eckart W.: Theoretische Untersuchungen von elektrorheologischen Flüssigkeiten bei homogenen und inhomogenen elektrischen Feldern.Aachen: Shaker Verlag.Darmstadt: TU Darmstadt, Fachbereich Mathematik, 2000. Zbl 0958.76003. Zbl 0958.76003
Reference: [24] Ettwein F., Růžička M.: Existence of local strong solutions for motions of electrorheological fluids in three dimensions.Comput. Appl. Math. 53 (2007), 595–604. Zbl 1122.76092, MR 2323712, 10.1016/j.camwa.2006.02.032
Reference: [25] Frehse J., Málek J., Steinhauer M.: An existence result for fluids with shear dependent viscosity-steady flows.Nonlinear Anal., Theory Methods Appl. 30 (1997), no. 5, 3041–3049. Zbl 0902.35089, MR 99g:76006. MR 1602949, 10.1016/S0362-546X(97)00392-1
Reference: [26] Frehse J., Málek J., Steinhauer M.: On existence results for fluids with shear dependent viscosity – unsteady flows.Partial differential equations: theory and numerical solution. Proceedings of the ICM’98 satellite conference, Praha, 1998 (W. Jäger, J. Nečas, O. John, K. Najzar and J. Stará, eds.) 121–129, Chapman & Hall/CRC Res. Notes Math. 406, Boca Raton, FL, 2000. MR 1713880
Reference: [27] Frehse J., Málek J., Steinhauer M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method.SIAM J. Math. Anal. 34 (2003), no. 5, 1064–1083 (electronic). Zbl 1050.35080, MR 2005c:76007. Zbl 1050.35080, MR 2001659, 10.1137/S0036141002410988
Reference: [28] Giusti E.: Metodi diretti nel calcolo delle variazioni.Unione Matematica Italiana, Bologna, 1994. Zbl 0942.49002, MR 2000f:49001. Zbl 0942.49002, MR 1707291
Reference: [29] Gossez J. P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients.Trans. Amer. Math. Soc. 190 (1974), 163–205. Zbl 0239.35045, MR 49 #7598. MR 0342854, 10.1090/S0002-9947-1974-0342854-2
Reference: [30] Halsey T. C., Martin J. E., Adolf D.: Rheology of electrorheological fluids.Phys. Rev. Letters 68 (1992), 1519–1522. 10.1103/PhysRevLett.68.1519
Reference: [31] Huber A.: Die Divergenzgleichung in gewichteten Räumen und Flüssigkeiten mit $p(\cdot )$-Struktur.Diplomarbeit, Universität Freiburg, 2005.
Reference: [32] Hudzik H.: The problems of separability, duality, reflexivity and of comparison for generalized orlicz-sobolev spaces $W^k_m(\omega )$.Comment. Math. Prace Mat. 21 (1979), 315–324. Zbl 0429.46017, MR 81k:46031. MR 0577521
Reference: [33] Kokilashvili V., Krbec M.: Weighted inequalities in Lorentz and Orlicz spaces.World Scientific Publishing Co., Inc., River Edge, NJ, 1991. Zbl 0751.46021, 93g:42013. Zbl 0751.46021, MR 1156767
Reference: [34] Kováčik O., Rákosník J.: On spaces ${L}^{p(x)}$ and ${W}^{k,p(x)}$.Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. Zbl 0784.46029, MR 92m:46047.
Reference: [35] skii M. A. Krasnosel,’ Rutickii, Ja. B.: Convex functions and Orlicz spaces.Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961. Zbl 0095.09103, MR 23 #A4016. MR 0126722
Reference: [36] Málek J., Nečas J., Rokyta M., Růžička M.: Weak and measure-valued solutions to evolutionary PDEs.Applied Mathematics and Mathematical Computations, vol. 13, Chapman & Hall, London, 1996. Zbl 0851.35002, MR 97g:35002. Zbl 0851.35002, MR 1409366
Reference: [37] Marcellini P., Papi G.: Nonlinear elliptic systems with general growth.J. Differential Equations 221 (2006), no. 2, 412–443. Zbl pre05012954, 2007a:35024. MR 2196484, 10.1016/j.jde.2004.11.011
Reference: [38] Milani A., Picard R.: Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems.Partial differential equations and calculus of variations, Lecture Notes Math. 1357, 317–340, Springer, Berlin, 1988, LNM 1357. Zbl 0684.35084, MR 90b:35218. MR 0976242, 10.1007/BFb0082873
Reference: [39] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 45 #2461. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [40] Musielak J., Orlicz W.: On modular spaces.Studia Math. 18 (1959), 49–65. Zbl 0086.08901, MR 21 #298. Zbl 0099.09202, MR 0101487
Reference: [41] Musielak J.: Orlicz spaces and modular spaces.Lecture Notes Math. 1034. Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 85m:46028. Zbl 0557.46020, MR 0724434
Reference: [42] Nakano H.: Modulared semi-ordered linear spaces.Tokyo Math. Book Series, Vol. 1. Maruzen Co. Ltd., Tokyo, 1950. Zbl 0041.23401, MR 12,420a. Zbl 0041.23401, MR 0038565
Reference: [43] Nekvinda A.: Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb R)$.Math. Inequal. Appl. 7 (2004), no. 2, 255–265. Zbl 1059.42016, MR 2005f:42045. Zbl 1059.42016, MR 2057644
Reference: [44] Orlicz W.: Über konjugierte Exponentenfolgen.Studia Math. 3 (1931), 200–211. Zbl 0003.25203. Zbl 0003.25203
Reference: [45] Parthasarathy M., Klingenberg D. J.: Electrorheology: Mechanism and models.Materials, Sciences and Engineering R 17,2 (1996), 57–103. 10.1016/0927-796X(96)00191-X
Reference: [46] Pick L., Růžička M.: An example of a space $L^{p(x)}$ on which the hardy-littlewood maximal operator is not bounded.Expo. Math. 19 (2001), 369–371. Zbl 1003.42013, MR 2002m:42016. MR 1876258, 10.1016/S0723-0869(01)80023-2
Reference: [47] Rajagopal K. R., Růžička M.: On the modeling of electrorheological materials.Mech. Research Comm. 23 (1996), 401–407. Zbl 0890.76007. Zbl 0890.76007, 10.1016/0093-6413(96)00038-9
Reference: [48] Rajagopal K. R., Růžička M.: Mathematical modeling of electrorheological materials.Cont. Mech. Thermodynamics 13 (2001), 59–78. Zbl 0971.76100. Zbl 0971.76100, 10.1007/s001610100034
Reference: [49] Růžička M.: A note on steady flow of fluids with shear dependent viscosity.Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Anal., Theory Methods Appl. 30 (1997), no. 5, 3029–3039. Zbl 0906.35076, MR 99g:76005. MR 1602945
Reference: [50] Růžička M.: Flow of shear dependent electrorheological fluids: unsteady space periodic case.Applied nonlinear analysis (A. Sequeira, ed.), Kluwer/Plenum, New York, 1999, pp. 485–504. Zbl 0954.35138, MR 2001h:76115. Zbl 0954.35138, MR 1727468
Reference: [51] Růžička M.: Electrorheological fluids: Modeling and mathematical theory.Lecture Notes in Math. 1748, Springer-Verlag, Berlin, 2000. MR 2002a:76004. Zbl 0968.76531, MR 1810360
Reference: [52] Růžička M.: Modeling, mathematical and numerical analysis of electrorheological fluids.Appl. Math. 49 (2004), no. 6, 565–609. Zbl 1099.35103, MR 2005i:35223. Zbl 1099.35103, MR 2099981, 10.1007/s10492-004-6432-8
Reference: [53] Samko S. G.: Density $C_0^\infty (\mathbb R^n)$ in the generalized Sobolev spaces $W^{m,p(x)}(\mathbb R^n)$.Dokl. Akad. Nauk 369 (1999), no. 4, 451–454. Zbl 1052.46028, MR2001a:46036. MR 1748959
Reference: [54] Samko S. G.: Convolution and potential type operators in $L^{p(x)}(\mathbb R^n)$.Integral Transform. Spec. Funct. 7 (1998), no. 3-4, 261–284. Zbl 1023.31009, MR 2001d:47076. MR 1775832, 10.1080/10652469808819204
Reference: [55] Sharapudinov I. I.: The basis property of the Haar system in the space $\Cal L^{p(t)}([0,1])$ and the principle of localization in the mean.Mat. Sb. (N.S.) 130(172) (1986), no. 2, 275–283, 286. English transl. in Math. USSR, Sb. 58 (1987), 279–287. Zbl 0639.42026, MR 88b:42034. MR 0854976
Reference: [56] Sharapudinov I. I.: On the uniform boundedness in $L^p\ (p=p(x))$ of some families of convolution operators.Mat. Zametki 59 (1996), no. 2, 291–302, 320. English transl. in Math. Notes 59 (1996), no. 1-2, 205–212. Zbl 0873.47023, MR 97c:47035. MR 1391844
Reference: [57] Talenti G.: Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces.Ann. Mat. Pura Appl., IV. Ser. 120 (1979), 160–184. Zbl 0419.35041, MR 81i:35068. Zbl 0419.35041, MR 0551065
Reference: [58] Wolf J.: Existence of weak solutions to the equations of nonstationary motion of non-Newtonian fluids with shear-dependent viscosity.J. Math. Fluid Mech. (2006), no. 1, 104–138. MR2305828. MR 2305828
Reference: [59] Zhikov V. V.: Averaging of functionals of the calculus of variations and elasticity theory.Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710, 877. English transl. in Math. USSR Izv. 29 (1987), no. 1, 33–66. Zbl 0599.49031, MR 88a:49026. Zbl 0599.49031, MR 0864171
Reference: [60] Zhikov V. V.: Meyer-type estimates for solving the nonlinear Stokes system.Differ. Uravn. 33 (1997), no. 1, 107–114, 143. English transl. in Differential Equations 33 (1997), no. 1, 108–115. Zbl 0911.35089, MR 99b:35170. MR 1607245
Reference: [61] Zhikov V. V.: On some variational problems.Russian J. Math. Phys. 5 (1997), no. 1, 105–116 (1998). Zbl 0917.49006, MR 98k:49004. Zbl 0917.49006, MR 1486765
.

Files

Files Size Format View
NAFSA_106-2006-1_5.pdf 610.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo