Full entry |
PDF
(1.2 MB)
Feedback

Nonlinear diffusion, support dynamics, finite difference scheme

References:

[1] Bertsch, M.: **A class of degenerate diffusion equations with a singular nonlinear term**. Nonlinear Anal., 7 (1983), pp. 117–127. DOI 10.1016/0362-546X(83)90110-4 | MR 0687037

[2] DiBenedetto, E.: **Continuity of weak solutions to a general porous medium equation**. Indiana Univ. Math. J., 32 (1983), pp. 83–118. DOI 10.1512/iumj.1983.32.32008 | MR 0684758

[3] Galaktionov, V. A., Vazquez, J. L.: **Extinction for a quasilinear heat equation with absorption I. Technique of intersection comparison**. Commun. in Partial Differential Equations, 19 (1994), pp. 1075–1106. DOI 10.1080/03605309408821046 | MR 1284802

[4] Galaktionov, V. A., Vazquez, J. L.: **Extinction for a quasilinear heat equation with absorption II. A dynamical systems approach**. Commun. in Partial Differential Equations, 19 (1994), pp. 1107–1137. DOI 10.1080/03605309408821047 | MR 1284803

[5] Kersner, R.: **Degenerate parabolic equations with general nonlinearities**. Nonlinear Anal., 4 (1980), pp. 1043–1062. DOI 10.1016/0362-546X(80)90015-2 | MR 0591298

[6] Nakaki, T., Tomoeda, K.: **A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: support splitting phenomena**. SIAM J. Numer. Anal., 40 (2002), pp. 945–964. DOI 10.1137/S0036142900380303 | MR 1949400

[7] Polubarinova-Kochina, P.Y.: **Theory of Ground Water Movement**. Princeton Univ. Press, 1962. MR 0142252

[8] Rosenau, P., Kamin, S.: **Thermal waves in an absorbing and convecting medium**. Physica, 8D (1983), pp. 273–283. MR 0724593

[9] Scheidegger, A.E.: **The Physics of Flow through Porous Media**. Third edition, University of Toronto Press, 1974. MR 0127717

[10] Tomoeda, K.: **Numerically repeated support splitting and merging phenomena in a porous media equation with strong absorption**. Journal Math-for-Industry of Kyushu, 3 (2012), pp. 61–68. MR 2888003

[11] Tomoeda, K.: **Appearance of repeated support splitting and merging phenomena in a porous media equation with absorption**. Application of Mathematics in Technical and Natural Sciences (AMiTaNS’15), AIP Conference Proceedings, 1684 (2015), pp. 080013-1–080013-9. DOI 10.1063/1.4934324 | MR 2888003

[12] HASH(0x2e2c438): [12] D. Gilbarg and N. S. Trudinger, //Elliptic Partial Differential Equations of Second Order, Second Edition, Revised Third Printing 1998, Springer. MR 1063848