37 Dynamical systems and ergodic theory
37Bxx Topological dynamics
37B25 Lyapunov functions and stability; attractors, repellers (13 articles)
-
Aouiti, Chaouki; Jallouli, Hediene; Miraoui, Mohsen:
Global exponential stability of pseudo almost automorphic solutions for delayed Cohen-Grosberg neural networks with measure.
(English).
Applications of Mathematics,
vol. 67
(2022),
issue 3,
pp. 393-418
-
Nam, Bui Duc; Nhan, Nguyen Huu; Ngoc, Le Thi Phuong; Long, Nguyen Thanh:
On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms.
(English).
Mathematica Bohemica,
vol. 147
(2022),
issue 2,
pp. 237-270
-
Ghanmi, Boulbaba; Miraoui, Mohsen:
Stability of unique pseudo almost periodic solutions with measure.
(English).
Applications of Mathematics,
vol. 65
(2020),
issue 4,
pp. 421-445
-
Zhang, Ge; Wang, Chunni; Alsaedi, Ahmed; Ma, Jun; Ren, Guodong:
Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system.
(English).
Kybernetika,
vol. 54
(2018),
issue 4,
pp. 648-663
-
Tan, Manchun; Xu, Desheng:
Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays.
(English).
Kybernetika,
vol. 54
(2018),
issue 4,
pp. 844-863
-
-
Ngoc, Le Thi Phuong; Long, Nguyen Thanh:
Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions.
(English).
Applications of Mathematics,
vol. 61
(2016),
issue 2,
pp. 165-196
-
Afuwape, Anthony Uyi; Omeike, M. O.:
Ultimate boundedness of some third order ordinary differential equations.
(English).
Mathematica Bohemica,
vol. 137
(2012),
issue 3,
pp. 355-364
-
Rozgonyi, Szabolcs; Hangos, Katalin M.; Szederkényi, Gábor:
Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions.
(English).
Kybernetika,
vol. 46
(2010),
issue 1,
pp. 19-37
-
Sugie, Jitsuro; Onitsuka, Masakazu:
Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign.
(English).
Archivum Mathematicum,
vol. 44
(2008),
issue 4,
pp. 317-334
-
Ding, Changming:
The omega limit sets of subsets in a metric space.
(English).
Czechoslovak Mathematical Journal,
vol. 55
(2005),
issue 1,
pp. 87-96
-
Pokluda, David:
On the transitive and $\omega$-limit points of the continuous mappings of the circle.
(English).
Archivum Mathematicum,
vol. 38
(2002),
issue 1,
pp. 49-52
-
Janoš, Ludvík:
The Banach contraction mapping principle and cohomology.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 41
(2000),
issue 3,
pp. 605-610