Previous |  Up |  Next

Article

Title: Epi-archimedean groups (English)
Author: Conrad, Paul F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 24
Issue: 2
Year: 1974
Pages: 192-218
.
Category: math
.
MSC: 06A55
idZBL: Zbl 0319.06009
idMR: MR0347701
DOI: 10.21136/CMJ.1974.101233
.
Date available: 2008-06-09T14:06:25Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101233
.
Reference: [1] I. Amemiya: A general spectral theory in semi-ordered linear spaces.J. Fac. Sci. Hokkaido Uni. 12 (1953) 111-156. Zbl 0053.25802, MR 0056853
Reference: [2] K. A. Baker: Topological methods in the algebraic theory of vector lattices.Thesis, Harvard University 1966.
Reference: [3] S. J. Bernau: On hyper-archimedean vector lattices.Proc. Kon. Ned. Akad. V. Wetensch. 77 (1974) 40-43. MR 0341017, 10.1016/1385-7258(74)90011-0
Reference: [4] S. J. Bernau: Unique representations of Archimedean lattice groups and normal Archimedean lattice rings.Proc. London Math. Soc. 75 (1965) 599-631. MR 0182661
Reference: [5] A. Bigard: Groupes archimediens et hyper-archimediens.Séminaire Dubreil - Pisot 21 e (1967-68) no. 2.
Reference: [6] A. Bigard: Contribution a la théorie des groupes reticules.These University Paris, 1969.
Reference: [7] A. Bigard P. Conrad S. Wolfenstein: Compactly generated lattice-ordered groups.Math. Zeitschr., 107 (1968), 201-211. MR 0236083, 10.1007/BF01110258
Reference: [8] R. Bieter: Minimal vector lattice covers.Bull. Australian Math. Soc. 5 (1971), 411 - 413. MR 0295989
Reference: [9] R. Byrd P. Conrad, T. Lloyd: Characteristic subgroups of lattice-ordered groups.Trans. Amer. Math. Soc. 158 (1971) 339-371. MR 0279014, 10.1090/S0002-9947-1971-0279014-7
Reference: [10] P. Conrad D. McAlister: The completion of a lattice-ordered group.J. Australian Math. Soc. 9 (1969), 182-208. MR 0249340, 10.1017/S1446788700005760
Reference: [11] P. Conrad: Lattice-ordered groups.Lecture notes, Tulane University (1970). Zbl 0258.06011
Reference: [12] P. Conrad, J. Diem: The ring of polar preserving endomorphisms of an abelian lattice-ordered group.Illinois J. Mth. 15 (1971) 222-240. Zbl 0213.04002, MR 0285462, 10.1215/ijm/1256052710
Reference: [13] P. Conrad: The essential closure of an archimedean lattice-ordered group.Duke Math. J. 38 (1971) 151-160. Zbl 0216.03104, MR 0277457
Reference: [14] P. Conrad: The hulls of representable l-groups and f-rings.J. Australian Math. Soc. 16 (1973) 385-415. Zbl 0275.06025, MR 0344173, 10.1017/S1446788700015391
Reference: [15] P. Conrad: Minimal vector lattice covers.Bull. Australian Math. Soc. 4 (1971) 35-39. Zbl 0199.34703, MR 0272692, 10.1017/S0004972700046232
Reference: [16] P. Hill: Bounded sequences of integers.(preprint).
Reference: [17] W. Luxemburg, L. Moore: Archimedean quotient Reisz spaces.Duke Math. J. 34 (1967) 725-740. MR 0217562, 10.1215/S0012-7094-67-03475-8
Reference: [18] L. Moore: The lifting property in archimedean Reisz spaces.Indag. Math. 32 (1970) 141-150. MR 0258707, 10.1016/S1385-7258(70)80018-X
Reference: [19] F. Pedersen: Contributions to the theory of regular subgroups and prime subgroups of lattice-ordered groups.Dissertation Tulane University (1967). MR 2616630
Reference: [20] J. Martinez: Archimedean-like classes of lattice-ordered groups.Trans. Math. Joe. 186 (1973) 33-49. MR 0332614, 10.1090/S0002-9947-1973-0332614-X
Reference: [21] C. Nöbeling: Verallgemeinerung einer Satzes von Hern E. Specker.Inventiones Math. 6 (1968) 41-55. MR 0231907, 10.1007/BF01389832
Reference: [22] S. Wolfenstein: Contribution a l'étude des groupes reticules.These University Paris 1970.
Reference: [23] A. Zannen: M R 651.Math. Reviews 36 (1968), 142-143.
.

Files

Files Size Format View
CzechMathJ_24-1974-2_4.pdf 2.868Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo