Title:
|
Linear operators on $C_X(\Omega)$ for $\Omega$ dispersed (English) |
Author:
|
Swartz, Charles |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
25 |
Issue:
|
4 |
Year:
|
1975 |
Pages:
|
511-513 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
MSC:
|
46E10 |
MSC:
|
46G10 |
MSC:
|
47B37 |
idZBL:
|
Zbl 0319.46025 |
idMR:
|
MR0399855 |
DOI:
|
10.21136/CMJ.1975.101347 |
. |
Date available:
|
2008-06-09T14:14:35Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101347 |
. |
Reference:
|
[1] G. Alexander, C. Swartz: Linear operators on $c_X$.Czech. Math. Jour. 23, (1973) 231--234 Zbl 0262.47028, MR 0315400 |
Reference:
|
[2] J. Batt: Applications of the Orlicz-Pettis Theorem to operator-valued measures and compact and weakly compact linear transformations on the space of continuous functions.Rev. Roum. Math. Pure et Appl. 14 (1969), 907-935. Zbl 0189.43001, MR 0388158 |
Reference:
|
[3] J. Batt: On weak compactness in spaces of vector-valued measures and Bochner-integrable functions in connection with the Radon-Nikodym property of Banach spaces.Rev. Roum. Math. Pure of Appl, to appear. Zbl 0276.28013 |
Reference:
|
[4] J. Batt, J. Berg: Linear bounded transformations on the space of continuous functions.J. Funct. Anal., 4 (1969), 215-239. MR 0248546, 10.1016/0022-1236(69)90012-3 |
Reference:
|
[5] I. Dobrakov: A representation theorem for unconditionally converging linear operators on $С_0(T, X)$.Studia Math. 38 (1970), 460-461. |
Reference:
|
[6] I. Dobrakov: On representation of Hnear operators on $C_0(T, X)$.Czech. Math. Jour. 21 (1971), 13-30. MR 0276804 |
Reference:
|
[7] N. Dimford, J. Schwartz: Linear operators.Interscience, 1958. |
Reference:
|
[8] J. Howard: ${\cal F}$-singular and ${\cal G}$-cosingular operators.Colloq. Math. 22 (1970), 85-89. Zbl 0211.44704, MR 0275194, 10.4064/cm-22-1-85-89 |
Reference:
|
[9] A. Pelczynski: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Pol. 10 (1962), 641-648. Zbl 0107.32504, MR 0149295 |
Reference:
|
[10] A. Pelczynski, Z. Semadeni: Spaces of continuous functions (III).Studia Math. 18 (1959), 211-222. Zbl 0091.27803, MR 0107806, 10.4064/sm-18-2-211-222 |
Reference:
|
[11] C. Swartz: Unconditionally converging operators on the space of continuous functions.Rev. Roum. Math. Pure et Appl, 17 (1972), 1695-1702. Zbl 0247.46047, MR 0333815 |
Reference:
|
[12] B. L. D. Thorp: Sequential-evaluation convergence.J. London Math. Soc. 44 (1969), 201-209. Zbl 0174.17902, MR 0236675, 10.1112/jlms/s1-44.1.201 |
. |