Previous |  Up |  Next

Article

Title: Linear operators on $C_X(\Omega)$ for $\Omega$ dispersed (English)
Author: Swartz, Charles
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 25
Issue: 4
Year: 1975
Pages: 511-513
Summary lang: English
.
Category: math
.
MSC: 46E10
MSC: 46G10
MSC: 47B37
idZBL: Zbl 0319.46025
idMR: MR0399855
DOI: 10.21136/CMJ.1975.101347
.
Date available: 2008-06-09T14:14:35Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101347
.
Reference: [1] G. Alexander, C. Swartz: Linear operators on $c_X$.Czech. Math. Jour. 23, (1973) 231--234 Zbl 0262.47028, MR 0315400
Reference: [2] J. Batt: Applications of the Orlicz-Pettis Theorem to operator-valued measures and compact and weakly compact linear transformations on the space of continuous functions.Rev. Roum. Math. Pure et Appl. 14 (1969), 907-935. Zbl 0189.43001, MR 0388158
Reference: [3] J. Batt: On weak compactness in spaces of vector-valued measures and Bochner-integrable functions in connection with the Radon-Nikodym property of Banach spaces.Rev. Roum. Math. Pure of Appl, to appear. Zbl 0276.28013
Reference: [4] J. Batt, J. Berg: Linear bounded transformations on the space of continuous functions.J. Funct. Anal., 4 (1969), 215-239. MR 0248546, 10.1016/0022-1236(69)90012-3
Reference: [5] I. Dobrakov: A representation theorem for unconditionally converging linear operators on $С_0(T, X)$.Studia Math. 38 (1970), 460-461.
Reference: [6] I. Dobrakov: On representation of Hnear operators on $C_0(T, X)$.Czech. Math. Jour. 21 (1971), 13-30. MR 0276804
Reference: [7] N. Dimford, J. Schwartz: Linear operators.Interscience, 1958.
Reference: [8] J. Howard: ${\cal F}$-singular and ${\cal G}$-cosingular operators.Colloq. Math. 22 (1970), 85-89. Zbl 0211.44704, MR 0275194, 10.4064/cm-22-1-85-89
Reference: [9] A. Pelczynski: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Pol. 10 (1962), 641-648. Zbl 0107.32504, MR 0149295
Reference: [10] A. Pelczynski, Z. Semadeni: Spaces of continuous functions (III).Studia Math. 18 (1959), 211-222. Zbl 0091.27803, MR 0107806, 10.4064/sm-18-2-211-222
Reference: [11] C. Swartz: Unconditionally converging operators on the space of continuous functions.Rev. Roum. Math. Pure et Appl, 17 (1972), 1695-1702. Zbl 0247.46047, MR 0333815
Reference: [12] B. L. D. Thorp: Sequential-evaluation convergence.J. London Math. Soc. 44 (1969), 201-209. Zbl 0174.17902, MR 0236675, 10.1112/jlms/s1-44.1.201
.

Files

Files Size Format View
CzechMathJ_25-1975-4_2.pdf 586.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo