Previous |  Up |  Next

Article

References:
[1] Choudhuri Jyoti, Everitt W. N.: On the square of a formally self-adjoint differential expression. J. Lond. Math. Soc. (2) 1 (1969) 661 - 673. DOI 10.1112/jlms/s2-1.1.661 | MR 0248562
[2] Dunford N., Schwartz J. T.: Linear operators; Part II. (Interscience, New York 1955).
[3] Everitt W. N., Giertz M.: On some properties of the powers of a formally self-adjoint differential expression. Proc. Lond. Math. Soc. (3) 24 (1972) 149-170. DOI 10.1112/plms/s3-24.1.149 | MR 0289841 | Zbl 0243.34046
[4] Everitt W. N., Giertz M.: On the integrable-square classification of ordinary symmetric differential expressions. J. Lond. Math. Soc. (2) 10 (1975) 417-426. DOI 10.1112/jlms/s2-10.4.417 | MR 0377170 | Zbl 0317.34013
[5] Everitt W. N., Giertz M.: On the deficiency indices of powers of formally symmetric differential expressions. Spectral Theory and Differential Equations, Lecture Notes in Mathematics 448, Springer-Verlag, Berlin 1975. MR 0450661 | Zbl 0315.34010
[6] Kauffman R. M.: Polynomials and the limit point condition. Trans. Amer. Math. Soc. 201 (1975) 347-366. DOI 10.1090/S0002-9947-1975-0358438-7 | MR 0358438 | Zbl 0274.34019
[7] Kumar Krishna V.: The limit-2 case of the square of a second-order differential expression. J. London Math. Soc. 8 (1974) 134-138. MR 0338497
[8] Naimark M. A.: Linear differential operators: Part II. (Ungar, New York, 1968). MR 0353061 | Zbl 0227.34020
[9] Read T. T.: On the limit point condition for polynomials in a second order differential expression. Chalmers University of Göteborg and the University of Göteborg, Department of Mathematics No. 13 - 1974. MR 0372310
[10] Zettl A.: The limit point and limit circle cases for polynomials in a differential operator. Proc. Royal Soc. Edinburgh 73A (1974/75) 301-306. MR 0379968
Partner of
EuDML logo