Previous |  Up |  Next

Article

Title: On singular perturbation of nonlinear two-point boundary value problems (English)
Author: Baxley, John V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 27
Issue: 3
Year: 1977
Pages: 363-377
Summary lang: Russian
.
Category: math
.
MSC: 34E15
idZBL: Zbl 0376.34009
idMR: MR0437867
DOI: 10.21136/CMJ.1977.101474
.
Date available: 2008-06-09T14:24:00Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101474
.
Reference: [1] E. A. Coddington, N. Levinson: A boundary value problem for a nonlinear differential equation with a small parameter.Proc. Amer. Math. Soc. 3 (1952), pp. 73-81. Zbl 0046.09503, MR 0046517, 10.1090/S0002-9939-1952-0046517-3
Reference: [2] J. W. Bebernes, Robert Gaines: Dependence on boundary data and a generalized boundary-value problem.J. Differential Equations 4 (1968), pp. 359-368. MR 0228738, 10.1016/0022-0396(68)90022-3
Reference: [3] J. W. Bebernes, Robert Gaines: A generalized two-point boundary value problem.Proc. Amer. Math. Soc. 19 (1968), pp. 749-754. MR 0226098, 10.1090/S0002-9939-1968-0226098-3
Reference: [4] F. X. Dorr S. V. Parter, L. F. Shempine: Applications of the maximum principle to singular perturbation problems.Siam Review 15 (1973), pp. 43 - 88. MR 0320456, 10.1137/1015002
Reference: [5] W. Eckhaus, E. M. DeJager: Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type.Arch. Rational Mech. Anal. 23 (1966) pp. 26-86. MR 0206464, 10.1007/BF00281135
Reference: [6] A. Erdelyi: Approximate solutions of a nonlinear boundary value problem.Arch. Rational Mech. Anal. 29 (1968), pp. 1-17. Zbl 0155.13203, MR 0231002, 10.1007/BF00256455
Reference: [7] A. Erdelyi: On a nonlinear boundary value problem involving a small parameter.J. Australian Math. Soc. 2 (1962), pp. 425-439. Zbl 0161.06201, MR 0145162, 10.1017/S1446788700027440
Reference: [8] A. Erdelyi: The integral equations of asymptotic theory, in Asymptotic Solutions of Differential Equations and Their Applications.Wiley, New York, 1964, pp. 211 - 229. MR 0170061
Reference: [9] Gerald Houghton: Approximation methods to evaluate the effect of axial dispersion in isothermal flow reactors.Can. J. Chem. Engng. 40 (1962), pp. 188-193. 10.1002/cjce.5450400503
Reference: [10] H. B. Keller: Existence theory for two point boundary value problems.Bull. Amer. Math. Soc. 72 (1966), pp. 729-731. Zbl 0146.11503, MR 0192116, 10.1090/S0002-9904-1966-11572-0
Reference: [11] H. O. Kreiss, S. V. Parter: Remarks on singular perturbations with turning points.SIAM J. Math. Anal. 5 (1974), pp. 230-251. Zbl 0302.34074, MR 0348212, 10.1137/0505025
Reference: [12] R. E. O'Malley, Jr.: Topics in singular perturbations.Advances in Math. 2 (1968), pp. 365-470. Zbl 0203.40101, MR 0232056, 10.1016/0001-8708(68)90023-6
Reference: [13] R. E. О'Маllеуу, Jr.: A boundary value problem for certain non-linear second order differential equations with a small parameter.Arch. Rational Mech. Anal. 29 (1968), pp. 66- 74. MR 0231003, 10.1007/BF00256459
Reference: [14] R. E. O'Malley, Jr.: A non-linear singular perturbation problem arising in the study of chemical flow reactors.J. Inst. Maths. Applies. 6 (1969), pp. 12-20. 10.1093/imamat/6.1.12
Reference: [15] S. V. Parter: Singular perturbations of second order differential equations.(unpublished paper).
Reference: [16] S. V. Parter: Remarks on singular perturbation of certain non-linear two-point boundary value problems.SIAM J. Math, Anal. 3 (1972), pp. 295-299. MR 0312006, 10.1137/0503029
Reference: [17] S. V. Parter: Remarks on the existence theory for multiple solutions of a singular perturbation problem.SIAM J. Math. Anal. 3 (1972), pp. 496-505. Zbl 0251.34037, MR 0318620, 10.1137/0503047
Reference: [18] M. H. Protter, H. F. Weinberger: Maximum Principles in Differential Equations.Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 0219861
.

Files

Files Size Format View
CzechMathJ_27-1977-3_5.pdf 1.598Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo