Previous |  Up |  Next

Article

Title: An upper bound for the minimum degree of a graph (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 27
Issue: 3
Year: 1977
Pages: 460-466
Summary lang: Russian
.
Category: math
.
MSC: 05C99
idZBL: Zbl 0384.05049
idMR: MR0465950
DOI: 10.21136/CMJ.1977.101482
.
Date available: 2008-06-09T14:24:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101482
.
Reference: [1] M. Behzad, G. Chartrand: Introduction to the Theory of Graphs.Allyn and Bacon, Boston 1971. Zbl 0238.05101, MR 0432461
Reference: [2] G. Chartrand A. Kaugars, D. R. Lick: Critically $n$-connected graphs.Proc. Amer. Math. Soc. 32 (1972), 63-68. MR 0290999
Reference: [3] R. Halin: A theorem on $n$-connected graphs.J. Combinatorial Theory 7 (1969), 150-154. Zbl 0172.25803, MR 0248042, 10.1016/S0021-9800(69)80049-9
Reference: [4] R. Halin: On the structure of $n$-connected graphs.Recent Progress in Combinatorics (W. T. Tutte, ed.). Academic Press, New York and London 1969, pp. 91 - 102. Zbl 0193.53203, MR 0255435
Reference: [5] F. Harary: Graph Theory.Addison-Wesley, Reading 1969. Zbl 0196.27202, MR 0256911
Reference: [6] W. Mader: Eine Eigenschaft der Atome endlicher Graphen.Archiv Math. 22 (1971), 333 - 336. Zbl 0214.51503, MR 0292710, 10.1007/BF01222585
Reference: [7] L. Nebeský: A theorem on 2-connected graphs.Časopis pěst. mat. 100 (1975), 116-117. MR 0429642
.

Files

Files Size Format View
CzechMathJ_27-1977-3_13.pdf 854.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo