Title:
|
$F$-quasigroups isotopic to Moufang loops (English) |
Author:
|
Kepka, Tomáš |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
29 |
Issue:
|
1 |
Year:
|
1979 |
Pages:
|
62-83 |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
20N05 |
idZBL:
|
Zbl 0444.20067 |
idMR:
|
MR518141 |
DOI:
|
10.21136/CMJ.1979.101579 |
. |
Date available:
|
2008-06-09T14:31:52Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101579 |
. |
Reference:
|
[1] V. D. Belousov: Foundations of the theory of quasigroups and loops.(Russian), Moskva 1967. MR 0218483 |
Reference:
|
[2] R. H. Bruck: A survey of binary systems.Springer Verlag, 1966. Zbl 0141.01401, MR 0093552 |
Reference:
|
[3] I. A. Florja M. I. Ursul: F-quasigroups with the inverse property.(Russian), Questions of the theory of quasigroups and loops, Kišiněv 1971. |
Reference:
|
[4] J. Ježek T. Kepka: Varieties of abelian quasigroups.Czech. Math. J. 27 (1977), 473-503. MR 0450446 |
Reference:
|
[5] T. Kepka: On one class of quasigroups.Čas. Pěst. Mat. 97 (1972), 347-356. Zbl 0248.20086, MR 0316616 |
Reference:
|
[6] T. Kepka: Quasigroups which satisfy certain generalized forms of the abelian identity.Čas. Pěst. Mat. 100 (1975), 46-60. Zbl 0306.20080, MR 0435276 |
Reference:
|
[7] T. Kepka: Structure of triabelian quasigroups.Comment. Math. Univ. Carolinae 17 (1976), 229-240. Zbl 0338.20097, MR 0407182 |
Reference:
|
[8] T. Kepka: Structure of weakly abelian quasigroups.(to appear). Zbl 0394.20055, MR 0486264 |
Reference:
|
[9] T. Kepka: A note on WA-quasigroups.Acta Univ. Carolinae Math. Phys. 19/2 (1978), 61-62. MR 0509348 |
Reference:
|
[10] D. G. Murdoch: Quasigroups which satisfy certain generalized associative laws.Amer. J. Math. 61 (1939), 509-522. MR 1507391, 10.2307/2371517 |
Reference:
|
[11] H. Orlik-Pflugfelder: A special class of Moufang loops.Proc. Amer. Math. Soc. 26 (1970), 583-586. Zbl 0223.20081, MR 0265498, 10.1090/S0002-9939-1970-0265498-1 |
. |