[1] R. C. Bose: On the application of the properties of Galois fields to the construction of hyper-Graeco-Latin squares. Sankhya 3 (1938), 323 - 338.
[3] P. Erdös S. Chowla, E. G. Straus:
On the maximal number of pairwise orthogonal Latin squares of a given order. Canad. J. Math. 12 (1960), 204-208.
DOI 10.4153/CJM-1960-017-2 |
MR 0122730
[5] M. Hall:
Combinatorial Theory. Blaisdell Publishing Company, Waltham (Masachusetts), Toronto, London, 1967.
MR 0224481 |
Zbl 0196.02401
[8] L. Lovasz J. Nešetřil, A. Pultr: On a product dimension of graphs. to appear in J. Comb. Th. B.
[10] J. Nešetřil A. Pultr:
Product and other representation of graphs and related characteristics. to appear in Proc. Conf. Algebraic Methods in Graph Theory, Szeged 1978.
MR 0642062
[11] J. Nešetřil V. Rödl:
A simple proof of the Galvin Ramsey property of the class of all finite graphs and the dimension of graphs. Discrete Math. 23 (1978), 49-55.
DOI 10.1016/0012-365X(78)90186-3 |
MR 0523311
[12] S. Poljak A. Pultr, V. Rödl:
On the dimension of the Kneser graphs. to appear in Proc. Conf. Algebraic Methods in Graph Theory, Szeged 1978.
MR 0642064
[13] S. Poljak V. Rödl:
Set systems determined by intersections. to appear.
MR 0611430
[14] S. Poljak V. Rödl: On arc chromatic number of digraphs. to appear.
[15] S. Poljak V. Rödl, D. Turzík: Complexity of covering of edges by complete graphs. to appear.