Title:
|
Functional separation of inductive limits and representation of presheaves by sections. Part IV: Representation of presheaves by sections (English) |
Author:
|
Pechanec-Drahoš, Jaroslav |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
30 |
Issue:
|
4 |
Year:
|
1980 |
Pages:
|
511-538 |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
54B40 |
idZBL:
|
Zbl 0437.18008 |
idMR:
|
MR592317 |
DOI:
|
10.21136/CMJ.1980.101702 |
. |
Date available:
|
2008-06-09T14:40:57Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101702 |
. |
Reference:
|
[1] N. Bourbaki: Elements de Mathematique, Livre III, Topologie Generale.Paris, Herman, 1951. |
Reference:
|
[2] G. E. Bredon: Sheaf Theory.McGraw Hill, New York, 1967. Zbl 0158.20505, MR 0221500 |
Reference:
|
[3] E. Čech: Topological Spaces.Prague, 1966. MR 0211373 |
Reference:
|
[4] J. Dauns K. H. Hofmann: Representation of Rings by Sections.Mem. Amer. Math. Soc., 83, (1968). MR 0247487 |
Reference:
|
[5] Z. Frolík: Structure Projective and Structure Inductive Presheaves.Celebrazioni arrchimedee del secolo XX, Simposio di topologia, 1964. |
Reference:
|
[6] J. Dugundji: Topology.Allyn and Bacon, Boston, 1966. Zbl 0144.21501, MR 0193606 |
Reference:
|
[7] A. N. Gelfand D. A. Rajkov G. E. Silov: Commutative Normed Rings.Moscow, 1960 (Russian). |
Reference:
|
[8] E. Hille S. Phillipps: Functional Analysis and Semi-Groups.Providence, 1957. |
Reference:
|
[9] J. L. Kelley: General Topology.Van Nostrand, New York, 1955. Zbl 0066.16604, MR 0070144 |
Reference:
|
[10] G. Koethe: Topological Vector Spaces, I.New York Inc, Springer Vlg., 1969. Zbl 0179.17001 |
Reference:
|
[11] J. Pechanec-Drahoš: Representation of Presheaves of Semiuniformisable Spaces, and Representation of a Presheaf by the Presheaf of all Continuous Sections in its Covering Space.Czech. Math. Journal, 21 (96), (1971). MR 0487958 |
Reference:
|
[12] J. Pechanec-Drahoš: Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part One, Separation Theorems for Inductive Limits of Closured Presheaves.Czech. Math. Journal. |
Reference:
|
[13] J. Pechanec-Drahoš: Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part Two, Embedding of Presheaves into Presheaves of Compact Spaces.Czech. Math. Journal 29 (104), (1949). |
Reference:
|
[14] J. Pechanec-Drahoš: Functional Separation of Inductive Limits And Representation of Presheaves by Sections, Part Three, Some Special Cases of Separation of Inductive Limits of Presheaves.Czech. Math. Journal 30 (105), (1980). |
. |