Previous |  Up |  Next

Article

Title: The $\alpha $-completion of a lattice ordered group (English)
Author: Ball, Rick
Author: Davis, Gary
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 33
Issue: 1
Year: 1983
Pages: 111-118
.
Category: math
.
MSC: 06F15
idZBL: Zbl 0517.06014
idMR: MR687423
DOI: 10.21136/CMJ.1983.101861
.
Date available: 2008-06-09T14:53:06Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101861
.
Reference: [1] R. Ball: Convergence and Cauchy structures on lattice ordered groups.Trans. Amer. Math. Soc. 259 (1980), 357-392. Zbl 0441.06015, 10.1090/S0002-9947-1980-0567085-5
Reference: [2] R. Ball: Topological lattice ordered groups.Pacific. J. Math. 83 (1979), 1 - 26. Zbl 0434.06016, 10.2140/pjm.1979.83.1
Reference: [3] R. Ball: The distinguished completion of a lattice ordered group.Proceedings of the Carbondale Algebra Conference, Springer, to appear. Zbl 0468.06008, MR 0613187
Reference: [4] R. D. Byrd, J. T. Lloyd: Closed subgroups and complete distributivity in lattice ordered groups.Math. Zeitsch. 101 (1967), 123-130. Zbl 0178.02902, 10.1007/BF01136029
Reference: [5] J. Ellis: Group topological convergence in completely distributive lattice ordered groups.thesis, Tulane University, 1968.
Reference: [6] R. L. Madell: Complete distributivity and $\alpha$-convergence.unpublished, Village Community School, 272 West Tenth Street, N.Y., N.Y. 10014, U.S.A. Zbl 0466.06017
Reference: [7] F. Papangelou: Some considerations on convergence in abelian lattice groups.Pacific J. Math. 15 (1965), 1347-1364. Zbl 0146.04802, MR 0190242, 10.2140/pjm.1965.15.1347
.

Files

Files Size Format View
CzechMathJ_33-1983-1_14.pdf 996.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo