Previous |  Up |  Next

Article

Title: Differentiable manifolds with generalized boundary (English)
Author: Graham, George
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 34
Issue: 1
Year: 1984
Pages: 46-63
Summary lang: Russian
.
Category: math
.
MSC: 58A05
MSC: 58B05
MSC: 58C15
MSC: 58C20
idZBL: Zbl 0543.58009
idMR: MR731979
DOI: 10.21136/CMJ.1984.101925
.
Date available: 2008-06-09T14:57:50Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101925
.
Reference: [1] Banach S.: Théorie des Opérations Linéaires.Warsaw, 1932. Zbl 0005.20901
Reference: [2] Brockett R. W.: Lie algebras and Lie groups in control theory.Geometric Methods in System Theory, Reidel, Boston (1973), 43-82. Zbl 0305.93003
Reference: [3] Dieudonné J.: Foundations of Modern Analysis.Academic Press, New York and London (1960). MR 0120319
Reference: [4] Graham G.: Manifolds with Generalized Boundary and Diflferentiable Semigroups.Ph.D. Thesis, University of Houston, 1979.
Reference: [5] Graham G.: The Lie theory of differentiable semigroups.(to appear). MR 0724628
Reference: [6] Graves L. M.: Some mapping theorems.Duke Math. J. 17 (1950), 111-114. Zbl 0037.20401, MR 0035398, 10.1215/S0012-7094-50-01713-3
Reference: [7] Hille E., Phillips R. S.: Functional Analysis and Semigroups.Am. Math. Soc, Providence (1957). Zbl 0078.10004, MR 0089373
Reference: [8] Hirschorn R.: Topological semigroups, sets of generators and controllability.Duke Math. J., 40 (1973), 937-947. Zbl 0285.22001, MR 0325837
Reference: [9] Jurdjevic V., Sussmann H. J.: Control systems on Lie groups.Jour. Differential Eq. 12 (1972), 313-329. Zbl 0237.93027, MR 0331185, 10.1016/0022-0396(72)90035-6
Reference: [10] Kelley J. L.: General Topology.Graduate Texts in Mathematics, vol. 27, Springer-Verlag, New York, Heidelberg, and Berlin. Zbl 0518.54001, MR 0370454
Reference: [11] Lang S.: Introduction to differentiable manifolds.Interscience, New York (1967). MR 0155257
Reference: [12] Leach E. В.: А note on inverse function theorems.Proc. Amer. Math. Soc. 72 (1961), 694 to 697. Zbl 0191.15003, MR 0126146, 10.1090/S0002-9939-1961-0126146-9
Reference: [13] Mostert P. S., Shields A. L.: Semigroups with identity on a manifold.Trans. Am. Math. Soc., 91 (1959), 380-389. Zbl 0205.02602, MR 0105463, 10.1090/S0002-9947-1959-0105463-8
Reference: [14] Nashed M. Z.: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials in nonlinear functional analysis.Nonlinear Functional Analysis and Applications, L. B. Rail, ed., Academic Press, New York (1971), 109-309. MR 0276840
Reference: [15] Nashed M. Z.: Generalized inverse mapping theorems and related applications of generalized inverses in nonlinear analysis.Nonlinear Equations in Abstract Spaces, V. Lakshmikantham, ed.. Academic Press, New York (1978), 217-252. Zbl 0452.47073, MR 0502545
Reference: [16] Nijenhuis A.: Strong derivatives and inverse mappings.Amer. Math. Monthly 81 (1974), 969-981. Zbl 0296.58002, MR 0360958, 10.1080/00029890.1974.11993706
Reference: [17] Vainberg M. M.: Variational Methods for the Study of Nonlinear Operators.Holden-Day, San Francisco, (1964). Zbl 0122.35501, MR 0176364
Reference: [18] Whitney H.: Analytic extensions of differentiable functions defined in closed sets.Trans. Amer. Math. Soc. 36 (1934), 63-89. Zbl 0008.24902, MR 1501735, 10.1090/S0002-9947-1934-1501735-3
.

Files

Files Size Format View
CzechMathJ_34-1984-1_6.pdf 2.286Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo