Previous |  Up |  Next

Article

References:
[1] G. Blanton J. A. Baker: Iteration groups generated by $C^n$ functions. Archivum Math. (Brno), 18 (1982), 121-127. MR 0682099
[2] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung, VEB, Berlin 1967, English edition: Linear Differential Transformations of the Second Order, The English Univ. Press, London 1971.
[3] O. Borůvka: Sur une classe des groupes continus à un paramètre formés des functions réelles d'une variable. Ann. Polon Math. 42 (1982), 27-37. MR 0728067
[4] G. H. Halphen: Mémoire sur la réduction des équations différentielles linéaires aux formes intégrables. In: Mémoires présentés par divers savants à l'académie des sciences de l'institut de France 28 (1884), 1-301.
[5] O. Hölder: Die Axiome der Quantität und die Lehre vom Masse. Ber. Verh. Sachs. Ges. Wiss. Leipzig, Math. Phys. Cl. 53 (1901), 1-64.
[6] Z. Hustý: Die Iteration homogener linearer Differentialgleichungen. Publ. Fac. Sci. Univ. J. E. Purkyne (Brno), 449 (1964), 23-56. MR 0196166
[7] F. Neuman: Categorial approach to global transformations of the n-th order linear differential equations. Časopis Pěst. Mat. 102 (1977), 350-355. MR 0477284 | Zbl 0374.34028
[8] F. Neuman: On solutions of the vector functional equation $y(\xi (x))=f(x)·A·y(x)$. Aequationes Math. 16 (1977), 245-257. DOI 10.1007/BF01836037 | MR 0467061
[9] F. Neuman: Criterion of global equivalence of linear differential equations. Proc. Roy. Soc. Edinburg, 97A (1984), 217-221. MR 0751194 | Zbl 0552.34009
[10] F. Neuman: A survey of global properties of linear differential equations of the n-th order. In: Ordinary and Partial Differential Equations, Proceedings, Dundee 1982, Lecture Notes in Mathematics 964, 548-563. MR 0693139 | Zbl 0501.34003
[11] J. Posluszny L.A. Rubel: The motion of an ordinary differential equation. J. Diff. Equations 34 (1979), 291-302. DOI 10.1016/0022-0396(79)90011-1 | MR 0550047
[12] P. Stāckel: Über Transformationen von Differentialgleichungen. J. Reine Angew. Math. 111 (1893), 290-302.
Partner of
EuDML logo