[1] G. Andrews:
On the existence of solutions to the equation $u\sb{tt}=u\sb{xxt}+\sigma (u\sb{x})\sb{x}$. J. Differential Eq. 35 (1980), 200-231.
MR 0561978
[3] R. Arima Y. Hasegawa:
On global solutions for mixed problem of semi-linear differential equation. Proc. Japan. Acad. 39 (1963), 721-725.
MR 0161046
[4] T. K. Caughey J. Ellison:
Existence, uniqueness and stability of solutions of a class of nonlinear partial differential equations. J. Math. Anal. Appl. 51 (1975), 1 - 32.
DOI 10.1016/0022-247X(75)90136-5 |
MR 0387801
[6] J. С. Clements:
On the existence and uniqueness of solutions of the equation $u\sb{tt}-\partial \sigma \sb{i}(u\sb{x\sb{i}})/\partial x\sb{i}-D\sb{N}u\sb{t}=f$. Canad. Math. Bull. 18 (1975), 181-187.
MR 0397200
[10] Y. Ebihara:
Some evolution equations with the quasi-linear strong dissipation. J. Math. Pures et Appl. 58 (1979), 229-245.
MR 0539221 |
Zbl 0405.35049
[11] Y. Ebihara:
Some evolution equations with linear and quasi-linear strong dissipation. J. Gen. Res. Inst. Fukuoka Univ. 66 (1983), 7-19.
MR 0730317 |
Zbl 0536.35052
[12] W. M. Ewing W. S. Jardetzky F. Press:
Elastic waves in layered media. McGraw-Hill series in the geological sciences, New York-Toronto-London 1957.
MR 0094967
[14] J. M. Greenberg:
On the existence, uniqueness, and stability of solutions of the equation $\rho \sb{0}{\germ X}\sb{tt}=E({\germ X}\sb{x}) {\germ X}\sb{xx}+\lambda {\germ X}\sb{xxt}$. J. Math. Anal. Appl. 25 (1969), 575-591.
MR 0240473
[15] J. M. Greenberg R. C. MacCamy:
On the exponential stability of solutions of $E(u\sb{x})u\sb{xx}+\lambda u\sb{xtx}=\rho u\sb{tt}$. J. Math. Anal. Appl. 31 (1970), 406-417.
MR 0273178
[16] J. M. Greenberg R. C. MacCamy V. S. Mizel:
On the existence, uniqueness, and stability of solutions of the equation $\sigma \sp{\prime} \,(u\sb{x})u\sb{xx}+\lambda u\sb{xtx}=\rho \sb{0}u\sb{tt}$. J. Math. Mech. 17 (1968), 707-728.
MR 0225026
[18] L. Herrmann: Periodic solutions of a strongly nonlinear wave equation with internal friction. (Czech.) Thesis, Prague 1977, 30 pp.
[19] L. Herrmann:
Periodic solutions of abstract differential equations: the Fourier method. Czechoslovak Math. J. 30 (1980), 177-206.
MR 0566046 |
Zbl 0445.35013
[21] H. Kolsky:
Stress waves in Solids. Clarendon Press, Oxford 1953.
Zbl 0052.42502
[22] A. I. Kozhanov: An initial-boundary value problem for a class of equations of non-classical type. (Russian.) Differenciaľnye Uravn. 15 (1979), 272-280. (English trans., in: Differential Equations 15 (1979), 186-191.)
[23] A. I. Kozhanov N. A. Lar'kin N. N. Janenko:
On a regularization of equations of variable type. (Russian.) Dokl. Akad. Nauk SSSR 252 (1980), 525-527. (English trans., in: Soviet Math. Dokl. 21 (1980), 758-761.)
MR 0577831
[24] P. A. Lagerstrom J. D. Cole L. Trilling:
Problems in the theory of viscous compressible fluids. California Institute of Technology 1949.
MR 0041617
[25] J.-L. Lions:
Equations différentielles opérationnelles et problèmes aux limites. Springer-Verlag, Berlin-Göttingen-Heidelberg 1961.
MR 0153974 |
Zbl 0098.31101
[26] J.-L. Lions:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris 1969.
MR 0259693 |
Zbl 0189.40603
[27] J.-L. Lions E. Magenes: Problèrnes aux limites non homogènes et applications I, III. Dunod, Paris 1968.
[28] V. Lovicar:
Theorem of Fréchet and asymptotically almost periodic solutions of some nonlinear equations of hyperbolic type. Nonlinear evolution equations and potential theory. Proc. of a Summer School held in September 1973 at Podhradí near Ledeč on Sázava. Ed. Josef Král. Academia, Prague 1975.
MR 0481401
[29] R. C. MacCamy V. C. Mizel:
Existence and non-existence in the large of solutions of quasilinear wave equations. Arch. Rational Mech. Anal. 25 (1967), 299-320.
DOI 10.1007/BF00250932 |
MR 0216165
[33] C. O. A. Sowunmi:
On the existence of periodic solutions of the equation $\rho \sb{tt}u-(\sigma (u\sb{x}))\sb{x}-\lambda u\sb{xtx}-f=0$. Rend. Ist. Mat. Univ. Trieste 8 (1976), 58-68.
MR 0430486
[34] I. Straškraba O. Vejvoda:
Periodic solutions to abstract differential equations. Czechoslovak Math. J. 23 (1973), 635-669, 27 (1977), 511-513.
MR 0499577
[35] A. E. Taylor:
Introduction to functional analysis. J. Wiley and Sons, Inc., New York 1958.
MR 0098966 |
Zbl 0081.10202
[36] M. Tsutsumi:
Some nonlinear evolution equations of second order. Proc. Japan Acad. 47 (1971), 950-955.
MR 0312023 |
Zbl 0258.35017
[38] Y. Yamada:
Note on certain nonlinear evolution equations of second order. Proc. Japan Acad. 55 (1979), 167-171.
MR 0533540 |
Zbl 0436.47054
[39] Y. Yamada:
Some remarks on the equation $y\sb{tt}-\sigma (y\sb{x})$ $y\sb{xx}-y\sb{xtx}=f$. Osaka J. Math. 17 (1980), 303-323.
MR 0587752