Previous |  Up |  Next

Article

Title: Exponential dichotomy of evolutionary processes in Banach spaces (English)
Author: Preda, Petre
Author: Megan, Mihail
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 35
Issue: 2
Year: 1985
Pages: 312-323
Summary lang: Russian
.
Category: math
.
MSC: 34G10
MSC: 47D05
idZBL: Zbl 0609.47051
idMR: MR787133
DOI: 10.21136/CMJ.1985.102019
.
Date available: 2008-06-09T15:05:15Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102019
.
Reference: [1] E. A. Barbašin: Introduction in the theory of stability.Izd. Nauka, Moscow, 1967, (Russian). MR 0224916
Reference: [2] R. Conti: On the boundedness of solutions of ordinary differential equations.Funkcial. Ekvac. 9(1966), 23-26. Zbl 0152.08401, MR 0227518
Reference: [3] W. A. Coppel: Stability and asymptotic behaviour of differential equations.D.C. Heath, Boston, 1965. MR 0190463
Reference: [4] R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space.Siam J. Math. Anal., 3 (1973), 428-445. MR 0320465, 10.1137/0503042
Reference: [5] D. L. Lovelady: Boundedness properties for linear ordinary differential equations.Proc. Amer. Math. Soc., 41 (1973), 193-196. Zbl 0246.34018, MR 0328202, 10.1090/S0002-9939-1973-0328202-7
Reference: [6] J. L. Massera J. J. Schäffer: Linear differential equations and function spaces.Academic Press, New York and London, 1966. MR 0212324
Reference: [7] M. Megan P. Preda: On exponential dichotomy in Banach spaces.Bull. Austral. Math. Soc., 23( 1981), 293--306. MR 0617071, 10.1017/S0004972700007140
Reference: [8] P. Preda M. Megan: An extension of a theorem of R. Datko.preprint in Seminarul de Teoria Structurilor, Univ. Timişoara, 32 (1982), 1-12.
.

Files

Files Size Format View
CzechMathJ_35-1985-2_12.pdf 1.042Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo