Previous |  Up |  Next

Article

References:
[1] W. N. Anderson, T. D. Morley: Eigenvalues of the Laplacian of a graph. TR 71 - 45, University of Maryland technical report, 1971.
[2] M. Fiedler: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. MR 0318007 | Zbl 0265.05119
[3] M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25 (1975), 619-633. MR 0387321 | Zbl 0437.15004
[4] M. Fiedler: Algebraische Zusammenhangszahl und ihre numerische Bedeutung. ISNM 29, Birkhäuser, Basel 1975. MR 0432493
[5] M. Fiedler, J. Sedláček: On $W$-bases of directed graphs. (in Czech; Russian and German summary), Čas. pěst. mat. 83 (1958), 214-225. MR 0097071
[6] H. M. Trent: A note on the enumeration and listing of all possible trees in a connected linear graph. Proc. Nat. Acad. Sci. USA 40 (1954), 1004-1007. DOI 10.1073/pnas.40.10.1004 | MR 0067466 | Zbl 0055.42204
[7] A. Vrba: Subdeterminants and subgraphs. Čas. pěst. mat. 99 (1974), 64-76. MR 0351883 | Zbl 0275.05117
[8] R. Merris K. R. Rebman, W. Watkins: Permanental polynomials of graphs. Lin. Alg. Appl. 38 (1981), 273-288. DOI 10.1016/0024-3795(81)90026-4 | MR 0636042
[9] R. Merris: The Laplacian permanental polynomial for trees. Czech. Math. J. 32 (1982), 397-403. MR 0669782 | Zbl 0506.05044
[10] H. Mine: Permanents. Addision-Wesley 1978.
[11] M. Marcus, H. Minc: A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston 1964. MR 0162808 | Zbl 0126.02404
Partner of
EuDML logo