Previous |  Up |  Next

Article

Title: Closure operators on radical classes of lattice-ordered groups (English)
Author: Darnel, Michael R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 37
Issue: 1
Year: 1987
Pages: 51-64
Summary lang: Russian
.
Category: math
.
MSC: 06F15
idZBL: Zbl 0624.06022
idMR: MR875127
DOI: 10.21136/CMJ.1987.102134
.
Date available: 2008-06-09T15:14:14Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102134
.
Reference: [1] Ball R., Conrad P., and Darnel M.: Above and Below Subgroups of a Lattice-ordered Group.submitted to Transactions of the American Mathematical Society. A summary of the principal results appears in Ordered Algebraic Structures, published 1985 by Marcel Dekker, edited Wayne Powell and Constantine Tsinakis. MR 0823758
Reference: [2] Bigard A., Keimel K., and Wolfenstein S.: Groupes et Anneaux Réticulés.Lecture Notes in Mathematics 608, Springer Verlag, 1977. MR 0552653
Reference: [3] Birkhoff G.: Lattice Theory.AMS Colloquium Publications 25, 1979. Zbl 0505.06001, MR 0598630
Reference: [4] Bixler J. P., Darnel M.: Special-valued l-groups.to appear in Algebra Universalis. MR 0870466
Reference: [5] Bleier R., Conrad P.: The Lattice of Closed l-idelas and a*-extensions of an Abelian l-group.Pacific Journal of Mathematics, 47 (2) (1973), 329-340. MR 0325486, 10.2140/pjm.1973.47.329
Reference: [6] Conrad P.: Lattice-ordered Groups.Tulane Lecture Notes, Tulane University, 1970. Zbl 0258.06011
Reference: [7] Conrad P.: The Essential Closure of an Archimedean l-group.Duke Math. J., 38 (1971), 151-160. MR 0277457
Reference: [8] Conrad P.: Epi-archimedean l-groups.Czech. Math. J., 24 (99) (1974), 192-218. MR 0347701
Reference: [9] Conrad P.: Torsion Radicals of Lattice-ordered Groups.Symposia Mathematica 21, Academic Press, 1977, 479-513. Zbl 0372.06011, MR 0465969
Reference: [10] Conrad P.: K-radical Classes of Lattice-ordered Groups.Algebra Carbondale 1980, Lecture Notes in Mathematics 848, Springer-Verlag, 1980. MR 0613186
Reference: [11] Holland W. C: The Lattice-ordered Group of Automorphisms of an Ordered Set.Michigan Math. J., 10 (1963), 399-408. MR 0158009, 10.1307/mmj/1028998976
Reference: [12] Hollnad W. C: Varieties of l-groups are Torsion Classes.Czech. Math. J., 29 (104) (1979), 11-12. MR 0518135
Reference: [13] Holland W. C., McCleary S.: Wreath Products of Ordered Permutation Groups.Pacific J. Math., 31 (1969), 703-716. Zbl 0206.31804, MR 0258704, 10.2140/pjm.1969.31.703
Reference: [14] Jakubík J.: Radical Mappings and Radical Classes of Lattice-ordered Groups.Symposia Mathematica 21, Academic Press, 1977, 451-477. MR 0491397
Reference: [15] Jakubík J.: Products of Radical Classes of Lattice-ordered Groups.Acta Mathematica Comnenianae, 39 (1980), 31 - 41. MR 0619260
Reference: [16] Kenny G. O.: Lattice-ordered Groups.PhD dissertation. University of Kansas, 1975.
Reference: [17] Martinez J.: Varieties of Lattice-ordered Groups.Math. Zeit., 137 (1974), 265-284. Zbl 0274.20034, MR 0354483, 10.1007/BF01214370
Reference: [18] Martinez J.: Torsion Theory for l-groups, I.Czech. Math. J., 25 (100) (1975), 284-294. MR 0389705
Reference: [19] Read J.: Wreath Products of Nonoverlapping Lattice-ordered Groups.Can. Math. Bull., 17 (5) (1975), 713-722. Zbl 0313.06012, MR 0384642, 10.4153/CMB-1974-129-8
Reference: [20] Walker R.: The Stone-Cech Compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete.Band 83, Springer-Verlag, 1977. MR 0380698
Reference: [21] Weinberg E. C: Free Lattice-ordered Abelian Groups.Math. Ann., 151 (1963), 187-199. Zbl 0114.25801, MR 0153759, 10.1007/BF01398232
.

Files

Files Size Format View
CzechMathJ_37-1987-1_6.pdf 1.779Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo