Previous |  Up |  Next

Article

Title: Butler groups of infinite rank and axiom 3 (English)
Author: Albrecht, Ulrich F.
Author: Hill, Paul
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 37
Issue: 2
Year: 1987
Pages: 293-309
Summary lang: Russian
.
Category: math
.
MSC: 20K15
MSC: 20K20
MSC: 20K35
idZBL: Zbl 0628.20045
idMR: MR882600
DOI: 10.21136/CMJ.1987.102155
.
Date available: 2008-06-09T15:15:49Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102155
.
Reference: [1] D. M. Arnold: Pure subgroups of finite rank completely decomposable groups.Lecture Notes in Mathematics, Vol. 874 (pp. 1-31), Springer-Verlag, Berlin, Heidelberg, New York, 1981. Zbl 0466.20030, MR 0645913, 10.1007/BFb0090520
Reference: [2] D. M. Arnold: Notes on Butler groups and balanced extensions.preprint. Zbl 0601.20050, MR 0850285
Reference: [3] R. Baer: Abelian groups without elements of finite order.Duke Math. J. 3 (1937), 68-122. Zbl 0016.20303, MR 1545974, 10.1215/S0012-7094-37-00308-9
Reference: [4] L. Bican: Splitting in mixed groups.Czech. Math. J. 28 (1978), 356-364. MR 0480778
Reference: [5] L. Bican, L. Salce: Butler groups of infinite rank.Lecture Notes in Mathematics, Vol. 1006, pp. 171-189, Springer-Verlag, Berlin, Heidelberg, New York, 1983. Zbl 0515.20035, MR 0722617, 10.1007/978-3-662-21560-9_6
Reference: [6] M. С. R. Butler: A class of torsion-free abelian groups of finite rank.Proc. London Math. Soc. 75 (1965), 680-698. Zbl 0131.02501, MR 0218446
Reference: [7] L. Fuchs: Infinite Abelian Groups.Vol. I and II, Academic Press, London, New York, 1970 and 1973. Zbl 0209.05503, MR 0255673
Reference: [8] L. Fuchs, P. Hill: The balanced-projective dimension of abelian p-groups.preprint. Zbl 0602.20047, MR 0814915
Reference: [9] P. Griffith: A solution to the splitting mixed group problem of Baer.Trans. Amer. Math. Soc. 139 (1969), 261-269. Zbl 0194.05301, MR 0238957, 10.1090/S0002-9947-1969-0238957-1
Reference: [10] P. Hill: Isotype subgroups of totally projective groups.Lecture Notes in Mathematics, Vol. 874, pp. 305-321, Springer-Verlag, Berlin, Heidelberg, New York, 1983. MR 0645937, 10.1007/BFb0090544
Reference: [11] P. Hill: The third axiom of countability for Abelian groups.Proc. Amer. Math. Soc. 82 (1981), 347-350. Zbl 0467.20041, MR 0612716, 10.1090/S0002-9939-1981-0612716-0
Reference: [12] P. Hill Sind С. Megibben: The theory and classification of abelian p-groups.Math. Zeit., to appear.
Reference: [13] L. Lady: Extension of scalars for torsion free modules over Dedekind domains.Symposia Mathematica 23 (1979), 287-305. Zbl 0425.13001, MR 0565611
Reference: [14] F. Richman: An extension of the theory of completely decomposable torsion-free abelian groups.Trans. Amer. Math. Soc. 279 (1983), 175-185. Zbl 0524.20028, MR 0704608, 10.1090/S0002-9947-1983-0704608-X
.

Files

Files Size Format View
CzechMathJ_37-1987-2_10.pdf 2.105Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo