Previous |  Up |  Next

Article

Title: Dependences between definitions of finiteness (English)
Author: Spišiak, Ladislav
Author: Vojtáš, Peter
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 3
Year: 1988
Pages: 389-397
.
Category: math
.
MSC: 03E25
MSC: 03E30
idZBL: Zbl 0667.03040
idMR: MR950292
DOI: 10.21136/CMJ.1988.102234
.
Date available: 2008-06-09T15:21:55Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102234
.
Reference: [1] A. Blass: Existence of bases implies the axiom of choice.In J. E. Baumgartner, D. A. Martin, S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 31 (1984) 31 - 33. Zbl 0557.03030, MR 0763890, 10.1090/conm/031/763890
Reference: [2] J. D. Halpern P. E. Howard: Cardinals m such that 2m = m.Proc. Amer. Math. Soc. 26 (1970) 487-490. MR 0268034
Reference: [3] J. D. Halpern P. E. Howard: Cardinal addition and the Axiom of Choice.Bull. Amer. Math. Soc. 80 (1974) 584-586. MR 0329890, 10.1090/S0002-9904-1974-13510-X
Reference: [4] T. Jech: Eine Bemerkung zum Auswahlaxiom.Časopis Pěst. Mat. 93 (1968), 30-31. Zbl 0167.27402, MR 0233706
Reference: [5] T. Jech: The Axiom of Choice.Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973. Zbl 0259.02052, MR 0396271
Reference: [6] T. Jech A. Sochor: Applications of the $\Theta$-model.Bull. Acad. Polon. Sci. 16 (1966) 351-355. MR 0228337
Reference: [7] A. Levy: The independence of various definitions of finiteness.Fund. Math. XLVI (1958) 1-13. Zbl 0089.00702, MR 0098671
Reference: [8] A. Levy: Basic Set Theory. $\Omega$ Perspectives in Mathematical Logic.Springer-Verlag 1979. MR 0533962
Reference: [9] A. R. D. Mathias: Surrealistic landscape with figures (a survey of recent results in set theory).Periodica Math. Hungarica 10 (1979) 109-175. MR 0539225, 10.1007/BF02025889
Reference: [10] G. Sageev: An independence result concerning the Axiom of Choice.Ann. Math. Logic 8(1975) 1-184. Zbl 0306.02060, MR 0366668, 10.1016/0003-4843(75)90002-9
Reference: [11] G. Sageev: A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic.To appear.
Reference: [12] W. Sierpinski: Cardinal and ordinal numbers.PWN, Warszawa 1958. Zbl 0083.26803, MR 0095787
Reference: [13] L. Spišiak: Definitions of finiteness.To appear.
Reference: [14] A. Tarski: Sur quelques théorèmes qui équivalent a l'axiome du choix.Fund. Math. 5 (1924) 147-154. 10.4064/fm-5-1-147-154
Reference: [15] A. Tarski: Sur les ensembles finis.Fund. Math. 6 (1924) 45-95. 10.4064/fm-6-1-45-95
Reference: [16] J. Truss: Classes of Dedekind finite cardinals.Fund. Math. To appear. Zbl 0292.02049, MR 0469760
.

Files

Files Size Format View
CzechMathJ_38-1988-3_2.pdf 1.251Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo