Previous |  Up |  Next

Article

Title: Sequential convergences in Boolean algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 3
Year: 1988
Pages: 520-530
.
Category: math
.
MSC: 06E99
idZBL: Zbl 0668.54002
idMR: MR950306
DOI: 10.21136/CMJ.1988.102248
.
Date available: 2008-06-09T15:23:01Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102248
.
Reference: [1] M. Harminc: Sequential convergences on abelian lattice-ordered groups.Convergence structures 1984. Mathematical Research, Band 24, Akademie-Verlag, Berlin 1985, 153-158. MR 0835480
Reference: [2] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group.Czechoslov. Math. J. 37, 1987, 533-546. MR 0913986
Reference: [3] M. Harminc: Convergences on lattice ordered groups.Dissertation, Math. Inst. Slovak Acad. Sci., 1986 (In Slovak.)
Reference: [4] J. Jakubík: Convergences and higher degrees of distributivity of lattice ordered groups.Math. Slovaca 38, 1988, 269-272. MR 0977905
Reference: [5] H. Löwig: Intrinsic topology and completion of Boolean rings.Ann. Math. 42, 1941, 1138 to 1196. MR 0006494, 10.2307/1970464
Reference: [6] J. D. Monk: Cardinal functions on Boolean algebras.Ann. of Discrete Math. 23, 9-38. Zbl 0706.06009, MR 0779843
Reference: [7] J. Novák M. Novotný: On the convergence in $\sigma$-algebras of point-sets.Czechoslov. Math. J. 3, 1953, 291-296. MR 0060572
Reference: [8] F. Papangelou: Order convergence and topological completion of commutative lattice-groups.Math. Ann. 155, 1964, 81-107. Zbl 0131.02601, MR 0174498, 10.1007/BF01344076
Reference: [9] R. S. Pierce: Some questions about complete Boolean algebras.Proc. Symp. Pure Math., Vol. II, Lattice theory. Amer. Math. Soc., 1961, 129-160. Zbl 0101.27104, MR 0138570
.

Files

Files Size Format View
CzechMathJ_38-1988-3_16.pdf 1.351Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo