[1] S. Agmon A. Douglis L. Nirenberg:
Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 (1959), 623-727.
DOI 10.1002/cpa.3160120405 |
MR 0125307
[2] J. Franke:
Regular elliptic boundary value problems in Besov and Triebel-Lizorkin spaces. The case $0. Math. Nachr. (to appear). MR 1349041
[3] J. Franke:
On the spaces $F\sb {pq}\sp s$ of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains. Math. Nachr. 125 (1986), 29-68.
DOI 10.1002/mana.19861250104 |
MR 0847350
[4] J. Franke T. Runst:
On the admissibility of function spaces of type $B\sp s\sb {p,q}$ and $F\sp s\sb {p,q}$. Boundary value problems for non-linear partial differential equations. Analysis Math. 13 (1987), 3-27.
DOI 10.1007/BF01905928 |
MR 0893032
[5] S. Fučík:
Solvability of Nonlinear Equations and Boundary Value Problems. Soc. Czechoslovak Math. Phys., Prague 1980.
MR 0620638
[6] S. Fučík A. Kufner:
Nonlinear Differential Equations. Elsevier, Amsterdam 1980.
MR 0558764
[9] E. M. Landesman A. C. Lazer:
Nonlinear perturbation of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623.
MR 0267269
[10] J. Nečas:
Sur l'Alternative de Fredholm pour les opérateurs non-linéaires avec application aux problèmes aux limites. Ann. Scuola Norm. Sup. Pisa 23 (1969), 331 - 345.
MR 0267430
[11] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.
MR 0227584
[ 12] J. Nečas:
On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 14 (1973), 63 - 72.
MR 0318995
[13] S. I. Pokhozhaev: The solvability of non-linear equations with odd operators. (Russian). Functionalnyi analys i prilož. 1 (1967), 66-73.
[14] T. Riedrich:
Vorlesungen über nichtlineare Operatorengleichungen. Teubner-Texte Math., Teubner, Leipzig, 1976.
MR 0467414 |
Zbl 0332.47026
[15] T. Runst:
Mapping properties of non-linear operators in spaces of type $B\sp s\sb {p,q}$ and $F\sp s\sb {p,q}$. Analysis Math. 12(1986), 313-346.
DOI 10.1007/BF01909369 |
MR 0877164
[16] H. Triebel:
Spaces of Besov-Hardy-Sobolev Type. Teubner-Texte Math., Teubner, Leipzig, 1978.
MR 0581907 |
Zbl 0408.46024
[17] H. Triebel:
Theory of Function Spaces. Akademische Verlagsgesellschaft Geest & Portig, Lepzig, 1983, und Birkhäuser, Boston, 1983.
MR 0781540 |
Zbl 0546.46028
[19] H. Triebel:
Mapping properties of Non-linear Operators Generated by $\Phi (u)=\vert u\vert \sp{\rho }$ and by Holomorphic $\Phi (u)$ in Function Spaces of Besov-Hardy-Sobolev Type. Boundary Value Problems for Elliptic Differential Equations of Type $\Delta u=f(x)+\Phi (u)$. Math. Nachr. 117 (1984), 193-213.
MR 0755303
[21] E. Zeidler:
Vorlesungen über nichtlineare Functionalanalysis II - Monotone Operatoren. - Teubner-Texte Math., Teubner, Leipzig, 1977.
MR 0473928