Previous |  Up |  Next

Article

Title: On some types of kernels of a convergence $l$-group (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 39
Issue: 2
Year: 1989
Pages: 239-247
.
Category: math
.
MSC: 06F15
MSC: 06F20
idZBL: Zbl 0748.06006
idMR: MR992131
DOI: 10.21136/CMJ.1989.102299
.
Date available: 2008-06-09T15:26:44Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102299
.
Reference: [1] J. Burzyk: The example of FLUSHD convergence without Y. Convergence structures.Proc. Conf. Bechyně (1984), Math. Research 24, Akademie-Verlag, Berlin, 1985. MR 0835471
Reference: [2] P. Conrad: Lattice ordered groups.Tulane University, 1970. Zbl 0258.06011
Reference: [3] C. J. Everett S. Ulam: On ordered groups.Trans. Amer. Math. Soc. 57, 1945, 208-216. MR 0012285, 10.1090/S0002-9947-1945-0012285-5
Reference: [4] R. Frič P. Vojtáš: Diagonal conditions in sequential convergence.Convergence structures, Proc. Conf. Bechyně (1984), Math. Research 24, Akademie-Verlag, Berlin 1985. MR 0835474
Reference: [5] M. Harminc: Sequential convergence on abelian lattice-ordered groups.Convergence structures 1984. Mathem. Research, Band 24, Akademie Verlag, Berlin, 153-158. MR 0835480
Reference: [6] M. Harminc: The cardinality of the system of all convergences on an abelian lattice ordered group.Czechoslov. Math. J. 37, 1987, 533-546. MR 0913986
Reference: [7] M. Harminc: Sequential convergences on lattice ordered groups.Czechoslov. Math. J. (submitted). MR 0992130
Reference: [8] M. Harminc: Convergences on lattice ordered groups.Dissertation, Math. Inst. Slovak Acad. Sci., 1986. (In Slovak.)
Reference: [9] J. Jakubík: Kernels of lattice ordered groups defined by properties of sequences.Čas. pěst. matem. 109, 1984, 290-298. MR 0755595
Reference: [10] J. Jakubík: Convergences and complete distributivity of lattice ordered groups.Math. Slovaca 38, 1988, 269-272. MR 0977905
Reference: [11] J. Jakubík: On summability in convergence $l$-groups.Čas. pěst. matem. 113, 1988, 286-292. MR 0960765
Reference: [12] A. Kamiński: On characterization of topological convergence.Proc. Conf. on Convergence, Szczyrk (1979), Katowice 1980, 50-70. MR 0639315
Reference: [13] B. M. Копытов: Решеточно упорядоченные группы.Москва 1984. Zbl 1170.01392
Reference: [14] Р. Kratochvíl: Sequential convergences generated by coneighborhoods and an example of $D$ not $Y$ space.Czechoslov. Math. J. (to appear).
Reference: [15] W. A. J. Luxemburg A. C. Zaanen: Riesz Spaces.Vol. I, Amsterdam 1971. MR 0511676
Reference: [16] P. Mikusiński J. Pochcial: On Mackey convergence.Bull.Polish. Acad. Sci. Vol. 31 (1983), 151-155. MR 0742800
Reference: [17] J. Novák: On convergence groups.Czechoslov. Math. J. 20, 1970, 357-374. MR 0263973
Reference: [18] J. Novák L. Mišík: On $L$-spaces of continuous functions.Matem. fyz. sborník 1, 1951, 1-17. (In Slovak.) MR 0060213
Reference: [19] E. Pap: Funkcionalna analiza, nizovne konvergencije, neki principi funkcionalen analize.Novi Sad 1982. MR 0683763
Reference: [20] F. Papangelou: Order convergence and topological completion of commutative latticegroups.Math. Ann. 155, 1964, 81-107. MR 0174498, 10.1007/BF01344076
Reference: [21] J. Pochcial: An example of FLUSHK-convergence semigroup without $M$-property.Proc. Conference of Convergence, Szczyrk 1979, 95-96 (1980). MR 0639322
Reference: [22] J. Pochcial: On functional convergences.Rend.Ist. Matem. Univ. Trieste, 17, 1985, 47-54. Zbl 0606.54002, MR 0863555
Reference: [23] Б. 3. Вулих: Введение в теорию полуупорядоченных пространств.Москва 1961. Zbl 1160.68305
.

Files

Files Size Format View
CzechMathJ_39-1989-2_6.pdf 1.204Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo