Previous |  Up |  Next

Article

References:
[1] D. Gaspar N. Suciu: On the structure of isometric semigroups. Operator Theory: Adv. and Appl. 14, Birkhäuser Verlag Basel, 1984, 125-139. MR 0789613
[2] D. Gaspar N. Suciu: Intertwinings of isometric semigroups and Wold type decompositions. Sem. de operatori liniari si analiză armonică, No. 3, 1985.
[3] P. R. Halmos: Introduction to Hilbert space and the theory of spectral multiplicity. Chelsea Publishing Comp. New York, 1951. MR 0045309 | Zbl 0045.05702
[4] P. R. Halmos: Measure Theory. New York, 1950. MR 0033869 | Zbl 0040.16802
[5] H. Helson D. Lowdenslager: Prediction theory and Fourier series in several variables II. Acta Math. 106 (1961), 175-213. DOI 10.1007/BF02545786 | MR 0176287
[6] K. Horák V. Müller: On the structure of commuting isometries. CMUC 28 (1987), 165-171. MR 0889778
[7] G. Kalliampur V. Mandrekar: Nondeterministic random fields and Wold and Halmos decompositions for commuting isometries. Prediction Theory and Harmonic Analysis, North Holland Publ. Comp., 1983, 165-190. MR 0708524
[8] M. Slociński: On the Wold-type decomposition of a pair of commuting isometries. Annales Polonici Math. 37 (1980), 255-262. DOI 10.4064/ap-37-3-255-262 | MR 0587496
[9] M. Slociński: Models of commuting contractions and isometries. Report of the 11th Conference on Operator Theory Bucharest 1986 (to appear).
[10] I. Suciu: On the semigroups of isometries. Studia Math. 30. MR 0229093
Partner of
EuDML logo