Previous |  Up |  Next

Article

Title: Weak bases in modular lattices (English)
Author: Lengvárszky, Zsolt
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 2
Year: 1990
Pages: 222-225
.
Category: math
.
MSC: 06C05
idZBL: Zbl 0715.06005
idMR: MR1046290
DOI: 10.21136/CMJ.1990.102376
.
Date available: 2008-06-09T15:32:30Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102376
.
Reference: [1] G. Czédlì A. P. Huhn, E. T. Schmidt: Weakly independent subsets in lattices.Algebra Universalis 20 (1985), 194-196. MR 0806613, 10.1007/BF01278596
Reference: [2] G. Czédlianá Zs. Lengvárszky: Two notes on independent subsets in lattices.Acta Math. Hung.55(1989),169-171. MR 0987050
Reference: [3] G. Grätzer: General Lattice Theory.Akademie-Verlag, Berlin, 1978. MR 0504338
Reference: [4] C. Herrmann: Quasiplanare Verbände.Arch. Math. 24 (1973), 240-246. Zbl 0275.06011, MR 0342448, 10.1007/BF01228205
Reference: [5] D. Kelly, I. Rival: Crowns, fences and dismantlable lattices.Can. J. Math. 26 (1974), 1257-1271. Zbl 0271.06003, MR 0417003, 10.4153/CJM-1974-120-2
Reference: [6] I. Rival: Combinatorial inequalities for semimodular lattices of breadth two.Algebra Universalis 6 (1976), 303-311. Zbl 0423.06008, MR 0427182, 10.1007/BF02485838
.

Files

Files Size Format View
CzechMathJ_40-1990-2_6.pdf 560.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo