Previous |  Up |  Next

Article

Title: On a codimension 3 bifurcation of plane vector fields with $Z_2$ symmetry (English)
Author: Medveď, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 2
Year: 1990
Pages: 295-310
.
Category: math
.
MSC: 34C05
MSC: 34C23
MSC: 58F14
idZBL: Zbl 0724.34014
idMR: MR1046295
DOI: 10.21136/CMJ.1990.102381
.
Date available: 2008-06-09T15:32:55Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102381
.
Reference: [1] V. I. Arnold: Geometric Methods in the Theory of Ordinary Differential Equations.Springer-Verlag, New York 1983. MR 0695786
Reference: [2] N. N. Bautin, E. A. Leontovich: Methods and Examples of Qualitative Study of Dynamical Systems in the Plane.Nauka, Moscow 1978 (Russian).
Reference: [3] R. I. Bogdanov: Versal deformations of a singular point of vector fields in the plane in the case of zero eigenvalues.Selecta Math. Soviet 1 (1981), 389-421 (Proc. of Petrovski Seminar, 2 (1976), 37-65) (Russian). MR 0442996
Reference: [4] R. I. Bogdanov: Bifurcations of limit cycles of a certain family of vector fields in the plane.Selecta Math. Soviet 1 (1981), 373-387 (Proc. of Petrovski Seminar 2 (1976), 23-36) (Russian). MR 0442988
Reference: [5] J. Carr: Application of Center Manifold Theory.Springer-Verlag, New York 1981.
Reference: [6] J. Carr S. N. Chow, J. K. Hale: Abelian integrals and bifurcation theory.J. Differential Equations 59 (1985), 413-437. MR 0807855, 10.1016/0022-0396(85)90148-2
Reference: [7] S. N. Chow, J. K. Hale: Methods of Bifurcation Theory.Springer-Verlag, New York 1982. Zbl 0487.47039, MR 0660633
Reference: [8] S. N. Chow, J. A. Sanders: On the number of critical points of the period.J. Differential Equations 64 (1986), 51-66. Zbl 0594.34028, MR 0849664, 10.1016/0022-0396(86)90071-9
Reference: [9] R. Cushman, J. A. Sanders: A codimension two bifurcation with a third-order Picard-Fuchs equation.J. Differential Equations 59 (1985), 243 - 256. Zbl 0571.34021, MR 0804890, 10.1016/0022-0396(85)90156-1
Reference: [10] G. Dangelmayer, J. Guckenheimer: On a four parameter family of plane vector fields.Archive for Rational Mechanics and Analysis, 97 (1987), 321 - 352. MR 0865844, 10.1007/BF00280410
Reference: [11] B. Drachman S. A. Van Gils, Zhang Zhi-Fen: Abelian integrals for quadratic vector fields.J. Reine Angew. Math. 382 (1987), 165-180. MR 0921170
Reference: [12] F. Dumortier R. Roussarie, J Sotomayor: Generic 3-parameter families of vector fields on the plane.Unfolding a singularity with nilpotent linear part. The cusp-case of codimension 3, Ergodic Theory Dynamical Systems 7 (1987), No. 3, 375-413. MR 0912375
Reference: [13] C. Elpic E. Tirapegni M. Brachet P. Coullet, G. Iooss: A simple global characterization of normal forms of singular vector fields.Preprint No. 109, University of Nice, 1986, Physica 29 D (1987), 95-127. MR 0923885
Reference: [14] J. Guckenheimer: Multiple bifurcation problems for chemical reactors.Physica 20 D (1986), 1-20. Zbl 0593.34043, MR 0858791
Reference: [15] J. Guckenheimer: A condimension two bifurcation with circular symmetry.in "Multiparameter Bifurcation Theory", AMS series: Contemporary Math. 56 (1986), 175-184. MR 0855089
Reference: [16] J. Guckenheimer, P. Holmes: Nonlinear Oscillations.Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York 1983. Zbl 0515.34001, MR 0709768
Reference: [17] E. I. Horozov: Versal deformation of equivariant vector fields with $Z_2$ or $Z_3$ symmetry.Proc. of Petrovski Seminar 5 (1979), 163-192 (Russian). MR 0549627
Reference: [18] J. K. Hale: Introduction to dynamic bifurcation.in "Bifurcation Theory and Applications" (L. Salvadoei, Ed.), pp. 106-151, LNM 1057, Springer-Verlag 1984. Zbl 0544.58016, MR 0753299
Reference: [19] Yu. S. Ilyashenko: Multiplicity of limit cycles arising from perturbations of the form $w' = = P_2/Q_1$ of a Hamiltonian equation in the real and complex domain.Amer. Math. Soc. Transl. Vol. 118, No. 2, pp. 191-202, AMS, Providence, R. I., 1982. 10.1090/trans2/118/10
Reference: [20] Yu. S. Ilyashenko: Zeros of special abelian integrals in a real domain.Funct. Anal. Appl. 11 (1977), 309-311.
Reference: [21] M. Medved: Generic bifurcations of vector fields with a singularity of codimension 2.in "Equadiff 5, Bratislava 1981", Proceedings, Teubner-Texte zur Math., Band 47, Teubner-Verlag 1982, pp. 260-263. MR 0715987
Reference: [22] M. Medved: The unfoldings of a germ of vector fields in the plane with a singularity of codimension 3.Czechosl. Math. J. 35 (110), 1 (1985), 1-42. Zbl 0591.58022, MR 0779333
Reference: [23] M. Medved: Normal forms and bifurcations of some equivariant vector fields.to appear in Mathematica Slovaca 1990. Zbl 0735.58024, MR 1094774
Reference: [24] M. Medved: On a codimension three bifurcations.Časopis pro pěstování matem., 109 (1984), 3-26. MR 0741206
Reference: [25] J. A. Sanders, R. Cushman: Limit cycles in the Josephson equation.SIAM J. Math. Anal., Vol. 17, No. 3 (1986), 495-511. Zbl 0604.58041, MR 0838238, 10.1137/0517039
Reference: [26] F. Tokens: Unfoldings of certain singularities of vector fields: Generalized Hopf bifurcation.J. Differential Equations 14 (1973), 476-493. MR 0339264, 10.1016/0022-0396(73)90062-4
Reference: [27] F. Takens: Forced oscillations and bifurcations.in "Applications of Global Analysis", Comment, of Math. Inst. Rijksuniversiteit Ultrecht 1974. MR 0478235
Reference: [28] H. Žoladek: Bifurcation of certain families of planar vector fields tangent to the axes.Differential Equations 67 (1987), 1-55. MR 0878251, 10.1016/0022-0396(87)90138-0
Reference: [29] H. Žoladek: On versality of certain families of symmetric vector fields on the plane.Math. Sb. 120 (1983), 473-499.
Reference: [30] H. Žoladek: Abelian integrals in unfolding of codimension 3 singular planar vector fields I. The saddle and elliptic cases, II. The focus case.To appear in Lecture Notes in Math.
.

Files

Files Size Format View
CzechMathJ_40-1990-2_11.pdf 1.585Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo