Previous |  Up |  Next

Article

Title: Periodic derivative of solutions to nonlinear differential equations (English)
Author: Andres, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 3
Year: 1990
Pages: 353-360
.
Category: math
.
MSC: 34C25
MSC: 70F99
idZBL: Zbl 0727.34029
idMR: MR1065015
DOI: 10.21136/CMJ.1990.102388
.
Date available: 2008-06-09T15:33:23Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102388
.
Reference: [1] H. Poincaré: Lés méthodes nouvelles de la mécanique céleste.Gauthiers-Villars, Paris, 1892.
Reference: [2] M. Farkas: On stability and geodesies.Ann. Univ. Sci. Budapest. Rol. Eötvös Nom. 11 (1968), 145-159. MR 0240408
Reference: [3] R. B. Barrar: Existence of periodic solutions of the second kind in the restricted problem of three bodies.Astronom. J. 70, 1 (1965), 3 - 4. MR 0187899, 10.1086/109672
Reference: [4] H. E. Edgerton, P. Fourmarier: The pulling-into-step of a salient-pole synchronous motor.Trans. A.I.E.E. 50 (1931), 769-778. 10.1109/T-AIEE.1931.5055868
Reference: [5] P. Meystre: Free-electron lasers: An introduction.In ,,Laser Physics (D. F. Walls and J. D. Harvey, ed.),". Academic Press, Sydney-New York-London-Toronto-San Francisco, 1980.
Reference: [6] M. Farkas: Controllably periodic perturbations of autonomous systems.Acta Math. Acad. Sci. Hungar. 22, 3-4 (19 1), 337-348. MR 0296424
Reference: [7] M. Farkas: Determination of controllably periodic perturbed solutions by Poincaré's method.Stud. Sci. Math. Hungar. 7 (1972), 257-266. MR 0346266
Reference: [8] J. Andres: Solution with periodic second derivative of a certain third order differential equation.Math. Slovaca 37, 3 (1987), 239-245. Zbl 0629.34048, MR 1127107
Reference: [9] R. Reissig: Phasenraum-Methoden zum Studium nichtlinearen Differentialgleichungen.Jber. Deutsch. Math. 75 (1974), 130-139. MR 0477300
Reference: [10] S. Fučík J. Nečas J. Souček, V. Souček: Spectral Analysis of Nonlinear Operators.LNM 346, Springer-Verlag, Berlin-Heidelberg-New York, 1973. MR 0467421
Reference: [11] J. Mawhin: An extension of a theorem of A. C. Lazer on forced nonlinear oscillations.J. Math. Anal. Appl. 40 (1972), 20-29. Zbl 0245.34035, MR 0313587, 10.1016/0022-247X(72)90025-X
Reference: [12] C. H. Hardy J. E. Littlewood, G. Polya: Inequalities.Cambridge University Press, London, 1951.
Reference: [13] J. Andres: On local $\omega$-cycles to certain third order nonlinear differential equations.Fasc. Math. 17 (1987), 49-54. Zbl 0648.34043, MR 0942319
Reference: [14] S. N. Chow, A. Lasota: On boundary value problems for ordinary differential equations.J. Diff. Eqns 14, 2 (1973), 326-337. Zbl 0285.34009, MR 0330598, 10.1016/0022-0396(73)90051-X
Reference: [15] S. H. Chang: Periodic solutions of certain differential equations with quasibounded nonlinearities.J. Math. Anal. Appl. 56 (1976), 165-171. Zbl 0338.34034, MR 0419944, 10.1016/0022-247X(76)90014-7
Reference: [16] R. Reissig: Periodic solutions of certain higher order differential equations.Nonlinear Analysis, T.M.A. 2, 5 (1978), 635-642. Zbl 0385.34019, MR 0512159
.

Files

Files Size Format View
CzechMathJ_40-1990-3_1.pdf 915.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo