Previous |  Up |  Next

Article

Title: Some density theorems for Toeplitz operators on Bergman spaces (English)
Author: Engliš, Miroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 3
Year: 1990
Pages: 491-502
.
Category: math
.
MSC: 47B35
MSC: 47D99
idZBL: Zbl 0736.47018
idMR: MR1065029
DOI: 10.21136/CMJ.1990.102402
.
Date available: 2008-06-09T15:34:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102402
.
Reference: [1] N. I. Ahiezer: Theory of approximation.Ungar, 1956. MR 0095369
Reference: [2] M. Englis: A note on Toeplitz operators on Bergman spaces.Comm. Math. Univ. Carolinae 29 (1988), 217-219. Zbl 0658.47030, MR 0957387
Reference: [3] H.-F. Gautrin: Toeplitz operators in Bargmann spaces.Int. Eq. Oper. Theory 11 (1988), 173-185. Zbl 0644.47028, MR 0928481, 10.1007/BF01272117
Reference: [4] B. Sz.-Nagy C. Foias: Toeplitz type operators and hyponormality.in Dilation theory, Toeplitz operators and other topics, Operator Theory 11, Birkhäuser 1983, pp. 371 - 378. Zbl 0533.47019, MR 0789650
Reference: [5] R. F. Olin J. E. Thomson: Algebras generated by a subnormal operator.Trans. Amer. Math. Soc. 271 (1982), 299-311. MR 0648094, 10.1090/S0002-9947-1982-0648094-6
Reference: [6] V. Pták P. Vrbová: Operators of Toeplitz and Hankei type.Acta Sci. Math. Szeged 52 (1988), 117-140. MR 0957795
Reference: [7] V. Pták P. Vrbová: Lifting intertwining relations.Int. Eq. Oper. Theory 11 (1988), 128-147. MR 0920738, 10.1007/BF01236657
Reference: [8] K. Yosida: Functional analysis.Springer, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CzechMathJ_40-1990-3_15.pdf 1.297Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo