Previous |  Up |  Next

Article

References:
[1] F. Adams: Lectures on Lie groups. W. A. Benjamin INC, New York-Amsterdam, 1969. MR 0252560 | Zbl 0206.31604
[2] S. Helgason: Differential Geometry, Lie Groups, and Symmetric spaces. Academic Press, New York, 1978. MR 0514561 | Zbl 0451.53038
[3] J. Gancarzewicz: Liftings of vector fields to natural bundles. Comptes Rendus Acad. Sciences, Paris 296(1982), 59-61. MR 0691028
[4] J. Gancarzewicz: Liftings of functions and vector fields to natural bundles. Dissert. Math. CCXII, Warszawa 1983. MR 0697471
[5] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Interscience Publ., New York, vol. I (1963), vol. II (1969). MR 0152974 | Zbl 0119.37502
[6] I. Kolář: Functorial prolongations of Lie groups and their actions. Časop. Pěst. Mat. 108 (1983), 289-293. MR 0716414
[7] O. Kowalski: Generalized symmetric spaces. Lect. Notes in Math., 105 Springer, 1980. MR 0579184 | Zbl 0431.53042
[8] A. Morimoto: Prolongations of geometric structures. Lect. Notes, Inst. Math. Nagoya University, 1969. MR 0276893 | Zbl 0223.53027
[9] A. Morimoto: Liftings of some types of tensor fields and connections to tangent bundle of $p^r$-velocities. Nagoya Math. J. 40 (1970), 13 - 31. DOI 10.1017/S0027763000013830 | MR 0279720
[10] A. Morimoto: Liftings of tensor fields and connections to the tangent bundle of higher order. Nagoya Math. J. 40 (1970), 99-120. DOI 10.1017/S002776300001388X | MR 0279719
[11] M. Sekizawa: On complete lifts of reductive homogeneous spaces and generalized symmetric spaces. Czechoslovak Math. J. 36 (111) (1986), 516-534. MR 0863184 | Zbl 0615.53042
[12] M. Toomannian: Regular $s$-structure on TM. Tensor N. S. 42 (1985), 225 - 228. MR 0847040
[13] K. Yano, S. lshihwa: Tangent and cotangent bundles. Marcel Dekker Inc., New York, 1973.
Partner of
EuDML logo