[1] Albrecht U.: 
Endomorphism rings and $A$-projective torsion-free groups. Abelian Group Theory, Honolulu 1983, Springer LNM 1006 (1983); 209-227. 
MR 0722620[2] Albrecht U.: 
Baer's Lemma and Fuchs' Problem 84a. Trans. Amer. Math. Soc. 293 (1986); 565-582. 
MR 0816310 | 
Zbl 0592.20058[4] Albrecht U.: 
Abelian groups, $A$, such that the category of $A$-solvabIe groups is preabelian. Abelian Group Theory, Perth 1987; Contemporary Mathematics, Vol. 87; American Mathematical Society; Providence (1987); 117-132. 
DOI 10.1090/conm/087/995270 | 
MR 0995270[5] Albrecht U.: 
Endomorphism rings of faithfully flat abelian groups. to appear in Resultate der Mathematik. 
MR 1052585 | 
Zbl 0709.20031[8] Dugas M., Göbel R.: 
Every cotorsion-free ring is an endomorphism ring. Proc. London Math. Soc. 45 (1982); 319-336. 
MR 0670040[9] Fuchs L.: 
Infinite Abelian Groups. Vol. I and II, Academic Press; London, New York (1970/73). 
MR 0255673 | 
Zbl 0209.05503[10] Jans J.: Rings and Homology. Reinhold-Winston; New York (1979).
[12] Rotman J.: 
An Introduction to Homological Algebra. Academic Press; London, New York (1982). 
MR 0538169