Previous |  Up |  Next

Article

References:
[1] M. Behzad G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston 1979. MR 0525578
[2] G. Chartrand, R. E. Pippert: Locally connected graphs. Časopis pěst. mat. 99 (1974), 158-163. MR 0398872 | Zbl 0278.05113
[3] A. D. Glukhov: On chord-critical graphs. (in Russian). In: Some Topological and Combinatorial Properties of Graphs. Preprint 80.8. IM AN USSR, Kiev 1980, pp. 24-27. MR 0583198
[4] N. P. Homenko, A. D. Glukhov: One-component 2-cell embeddings and the maximum genus of a graph. (in Russian). In: Some Topological and Combinatorial Properties of Graphs. Preprint 80.8 IM AN USSR, Kiev 1980, pp. 5-23. MR 0583197
[5] N. P. Homenko N. A. Ostroverkhy, V. A. Kusmenko: The maximum genus of graphs. (in Ukrainian, English summary). In: $\varphi$-Transformations of Graphs (N. P. Homenko, ed.) IM AN URSR, Kiev 1973, pp. 180-210. MR 0422065
[6] M. Jungerman: A characterization of upper embeddable graphs. Trans. Amer. Math. Soc. 241 (1978), 401-406. MR 0492309 | Zbl 0379.05025
[7] L. Nebeský: Every connected, locally connected graph is upper embeddable. J. Graph Theory 5 (1981), 205-207. DOI 10.1002/jgt.3190050211 | MR 0615009
[8] L. Nebeský: A new characterization of the maximum genus of a graph. Czechoslovak Math. J. 31 (106) (1981), 604-613. MR 0631605
[9] L. Nebeský: On locally quasiconnected graphs and their upper embeddability. Czechoslovak Math. J. 35 (110) (1985), 162-166. MR 0779344
[10] Z. Ryjáček: On graphs with isomorphic, non-isomorphic and connected $N\sb 2$-neighbourhoods. Časopis pěst. mat. 112 (1987), 66-79. MR 0880933
[11] J. Sedláček: Local properties of graphs. (in Czech). Časopis pěst. mat. 106 (1981), 290-298. MR 0629727
[12] D. W. VanderJagt: Sufficient conditions for locally connected graphs. Časopis pěst. mat. 99 (1974), 400-404. MR 0543786 | Zbl 0294.05123
[13] A. T. White: Graphs, Groups, and Surfaces. North-Holland, Amsterdam 1984. MR 0780555 | Zbl 0551.05037
[14] N. H. Xuong: How to determine the maximum genus of a graph. J. Combinatorial Theory Ser. B26 (1979), 217-225. DOI 10.1016/0095-8956(79)90058-3 | MR 0532589 | Zbl 0403.05035
Partner of
EuDML logo