Previous |  Up |  Next

Article

Title: Uniqueness of the solution of the boundary-initial value problem for a linear elastic Cosserat continuum (English)
Author: Hlaváček, Miroslav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 16
Issue: 6
Year: 1971
Pages: 402-411
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The paper presents the proofs of two theorems of uniqueness of the solution of the mixed boundary-initial value problem for elastic Cosserat continuum. The first of the theorems deals with an anisotropic material and is deduced for bounded regions. Except for certain symmetry no restrictive assumptions are imposed on the anisotropy tensors. The second theorem concerns an isotropic material and is formulated for a certain class of unbounded regions. In addition to the inequalities that are necessary and sufficient for positive definitness of the strain energy density, two other restrictive inequalities must be assumed for the material constants. ()
MSC: 74B99
MSC: 74G30
MSC: 74H25
MSC: 74H99
idZBL: Zbl 0229.73015
idMR: MR0297188
DOI: 10.21136/AM.1971.103375
.
Date available: 2008-05-20T17:51:58Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103375
.
Reference: [1] Knops R. J., Payne L. E.: Uniqueness in classical elastodynamics.Arch. Ratl. Mech. Anal., 27 (1968), 5, 349-355. MR 0219261, 10.1007/BF00251437
Reference: [2] Wheeler L. T., Sternberg E.: Some theorems in classical elastodynamics.Arch. Ratl. Mech. Anal., 31 (1968), 1, 51 - 90. Zbl 0187.47003, MR 1553519, 10.1007/BF00251514
Reference: [3] Eringen A. C.: Linear theory of micropolar elasticity.Journ. Math. Mech., 15 (1966), 6, 909-923. Zbl 0145.21302, MR 0198744
Reference: [4] Аэро Э. Л., Кувшинский Е. В.: Континуальная теория асимметрической упругости.Физ. TB. тела, 6 (1964), 9, 2689-2699. Zbl 1117.65300
Reference: [5] Neuber H.: On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua.Appl. Mech., Proc. 11-th intern, congress of appl. mech., Munich 1964.
Reference: [6] Mindlin R. D., Tiersten F. F.: Effects of couple-stresses in linear elasticity.Arch. Ratl. Mech. Anal., 11 (1962), 415-448. MR 0144513, 10.1007/BF00253946
Reference: [7] Mindlin R. D., Eshel N. N.: On the first strain gradient theories in linear elasticity.Int. Journ. Solids and Struct., 4 (1968), 1, 75-95. 10.1016/0020-7683(68)90036-X
Reference: [8] Edelstein W. S.: A uniqueness theorem in the linear theory of elasticity.Acta Mech., 8 (1969), 183-187. Zbl 0194.28403, MR 0272240, 10.1007/BF01182259
Reference: [9] Mindlin R. D.: Microstructure in linear elasticity.Arch. Ratl. Mech. Anal., 16 (1964), 51-78. MR 0160356, 10.1007/BF00248490
Reference: [10] Hlaváček M., Kopáčková M.: Theorems of the linear elastostatic Cosserat continuum for exterior domains.Zeit. f. angew. Math. Mech., 50 (1970), 5, 295-302. MR 0267820, 10.1002/zamm.19700500504
Reference: [11] Hlaváček I., Hlaváček M.: On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses.I - Cosserat continuum, II - Mindlin's elasticity with microstructure and the first strain-gradient theory, Aplikace matematiky 14 (1969), 5, 387-410, 411-426. MR 0250537
Reference: [12] Gurtin M. E., Sternberg E.: Theorems in linear elastostatics for exterior domains.Arch. Ratl. Mech. Anal., 8 (1961), 99-119. Zbl 0101.17001, MR 0133972, 10.1007/BF00277433
Reference: [13] Zaremba S.: Sopra un teorema d'unicitá relative alla equazione delle onde sferiche.Atti della Reale Accad. dei Lincei, ser. 5, 24 (1915), 904.
Reference: [14] Kellogg O. D.: Foundations of potential theory.Berlin, Springer, 1929. MR 0222317
.

Files

Files Size Format View
AplMat_16-1971-6_3.pdf 1.254Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo