Previous |  Up |  Next

Article

Title: On a semi-variational method for parabolic equations. I (English)
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 17
Issue: 5
Year: 1972
Pages: 327-351
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The paper aims at a further development of the finite element method, when applied to mixed problems for parabolic equations. Much work has been done on a special Galerkin-type procedure of order $\tau^2$, which is similar to the Crank-Nicholson finite-difference scheme. Here a sequence of approximations is presented, possessing an increasing accuracy in the time increment $\tau$. The first approximation coincides with the above-mentioned procedure. For the second approximation, the rate of convergence $\tau^4$ and the stability with respect to the initial condition is proved. The efficiency of the first and second approximations are compared on a numerical example. ()
MSC: 35K99
MSC: 65M15
MSC: 65M99
MSC: 65N30
idZBL: Zbl 0246.65030
idMR: MR0314285
DOI: 10.21136/AM.1972.103427
.
Date available: 2008-05-20T17:54:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103427
.
Reference: [1] J. Douglas, Jr. T. Dupont: Galerkin methods for parabolic equations.SIAM J. Numer. Anal. 7(1970), 4, 575-626. MR 0277126
Reference: [2] I. Hlaváček: Variational formulation of the Cauchy problem for equations with operator coefficients.Aplikace matematiky 16 (1971), 1, 46-63. MR 0283652
Reference: [3] I. Hlaváček: Variational principles for parabolic equations.Aplikace matematiky 14 (1969), 4, 278-297. MR 0255988
Reference: [4] E. L. Wilson R. E. Nickell: Application of the finite element method to heat conduction analysis.Nucl. Eng. and Design 4 (1966), 276-286. 10.1016/0029-5493(66)90051-3
Reference: [5] J. L. Lions: Equations differentielles operationelles et problèmes aux limites.Grundlehren Math. Wiss. Bd. 111, Springer 1961. MR 0153974
Reference: [6] G. Birkhoff M. H. Schultz R. S. Varga: Piecewise Hermite interpolation in one and two variables with application to partial differential equations.Numerische Math. 11 (1968), 232-256. MR 0226817, 10.1007/BF02161845
Reference: [7] А. А. Самарский: Некоторые вопросы общей теории разностных схем.Сб. ,,Дифференциалные уравнения с частными производными." Издат. Наука, Москва 1970.
Reference: [8] A. Ralston: A first course in numerical analysis.Mc Graw-Hill, 1965. Zbl 0139.31603, MR 0191070
.

Files

Files Size Format View
AplMat_17-1972-5_2.pdf 3.624Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo