Previous |  Up |  Next

Article

Title: Dual variational principles for an elliptic partial differential equation (English)
Author: Vacek, Jiří
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 21
Issue: 1
Year: 1976
Pages: 5-27
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Dual variational principles for an elliptic partial differential equation of the second order with combined boundary conditions are formulated. A posteriori error estimates are obtained and for some class of problems the convergence of approximate solutions of the dual problem is proved. A numerical example is presented. The analysis of the approximate solutions suggests that especially when we are interested mainly in the values of co-normal derivatives on the boundary the dual method can serve an effective method for a approximate solution. ()
MSC: 35B45
MSC: 35J20
MSC: 65M99
MSC: 65N30
idZBL: Zbl 0345.35035
idMR: MR0412594
DOI: 10.21136/AM.1976.103619
.
Date available: 2008-05-20T18:03:14Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103619
.
Reference: [1] Aubin J. P., Burchard H. G.: Some aspects of the method of the hypercircle applied to elliptic variational problems.1 - 68, Numerical solution of partial differential equations - II, SYNSPADE 1970, ed. B. Hubbard, Academic Press, New York 1971. MR 0285136
Reference: [2] Babuška I., Kellog R. D.: Numerical solution of the neutron diffusion equation in the presence of corners and interfaces.Numerical reactor calculations, Panel IAEA-SM-154/59, Vienna 1973.
Reference: [3] Bramble J. H., Zlámal M.: Triangular elements in the finite element method.Math, of Соmр., 24, (1970), 809-821. MR 0282540
Reference: [4] Grenacher F.: A posteriori error estimates for elliptic partial differential equations.Technical Note BN-743, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1972.
Reference: [5] Kang C. M., Hansen K. F.: Finite element method for the neutron diffusion equation.Trans. Am. Nucl. Soc. 14 (1971), 199.
Reference: [6] Kaper H. G., Leaf G. K., Lindeman A. J.: Applications of finite element method in reactor mathematics.ANL-7925, Argonne National Laboratory, Argonne, Illinois, 1972.
Reference: [7] Nečas J.: Les méthodes directes en théorie des équations elliptiques.Academia, Praha 1967. MR 0227584
Reference: [8] Semenza L. A., Lewis E. E., Rossow E. C.: A finite element treatment of neutron diffusion.Trans. Am. Nucl. Soc. 14, (1971), 200.
Reference: [9] Semenza L. A., Lewis E. E., Rossow E. C.: Dual finite element methods for neutron diffusion.Trans. Am. Nucl. Soc., 14 (1971), 662.
Reference: [10] Strang G., Fix G. J.: An analysis of the finite element method.Prentice-Hall, Englewood Cliffs, New Jersey, 1973. Zbl 0356.65096, MR 0443377
Reference: [11] Taylor A. E.: Introduction to functional analysis.John Willey & Sons, New York, 1967. MR 0098966
Reference: [12] Vacek J.: Dual variational principles for neutron diffusion equation.thesis, MFF UK, Praha, 1974 (in Czech).
Reference: [13] Yasinsky J. B., Kaplan S.: On the use of dual variational principles for the estimation of error in approximate solutions of diffusion problems.Nucl. Sci. Eng., 31 (1968), 80. 10.13182/NSE68-A18010
Reference: [14] Zlámal M., Ženíšek A.: Mathematical aspects of the finite element method.Trans. of ČSAV, 81 (1971), Praha.
.

Files

Files Size Format View
AplMat_21-1976-1_3.pdf 3.062Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo