Previous |  Up |  Next

Article

Summary:
The radial Schrödinger equation with an attractive Gaussian potential and a general angular momentum is transformed by means of the modified Laplace transformation into a linear homogeneous differential equation of the first order with one "retarded" argument. Owing to the fusion of the arguments at the point $z=0$ its integration is possible by an iteration procedure. The discrete spectrum differs from the continuous one by the boundary condition at $z=\infty$ which determines the explicit equation for the energy eigenvalues. The properties of the resolvent are investigated in detail on the real half-axis and various approximations are dicussed.
References:
[1] А. О. Гельфонд: Исчисление конечных разностей. Гос. изд. Физ.-Мат. Лит., Москва, 1959. Zbl 1047.90504
[2] А. О. Myschkis: Lineare Differentialgleichungen mit nacheilendem Argument. Deutscher Verlag der Wissenschaften, Berlin, 1955. MR 0073844 | Zbl 0067.31802
[3] E. Pinney: Ordinary Difference-Differential Equations. University of California Press, Berkeley and Los Angeles, 1958. MR 0097597 | Zbl 0091.07901
[4] К. Г. Валеев И. Р. Карганьян: в сборнике: Функциональные и дифференциально-разностные уравнения. Издание Института математики АН УССР, Киев, 1974. Zbl 1235.49003
[5] S. Flügge: Practical Quantum Mechanics I. Springer-Verlag, Berlin-Heidelberg-New York, 1971. MR 1746199
[6] B. van der Pol H. Bremer: Operational Calculus Based on the Two-sided Laplace Integral. Cambridge, 1950. MR 0038476
[7] G. Doetsch: Handbuch der Laplace-Transformation vol. I + II. Birkhäuser Verlag, Basel and Stuttgart, 1950+ 1955. MR 0344808
[8] H. Bateman: Higher Transcendental Functions vol. III. McGraw-Hill Book Com., New York, Toronto and London, 1955. MR 0066496 | Zbl 0064.06302
[9] A. de Shalit I. Talmi: Nuclear Shell Theory. Academic Press, New York and London, 1963. MR 0154642
Partner of
EuDML logo