Previous |  Up |  Next

Article

Title: Some iterative Poisson solvers applied to numerical solution of the model fourth-order elliptic problem (English)
Author: Vajteršic, Marián
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 3
Year: 1985
Pages: 176-186
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: The numerical solution of the model fourth-order elliptic boundary value problem in two dimensions is presented. The iterative procedure in which the biharmonic operator is splitted into two Laplace operators is used. After formulating the finite-difference approximation of the procedure, a formula for the evaluation of the transformed iteration vectors is developed. The Jacobi semi-iterative, Richardson and A.D.I. iterative Poisson solvers are applied to compute one transformed iteration vector. By the efficient use of the decomposition property of the corresponding iteration matrices, the fast Fourier transform algorithm needs to be applied twice in the evaluation of one iteration vector. The asymptotic number of operations for the sequential computation is $5n^2 log_2 n$, where $n^2$ is the number of interior grid points in the unit square. The result of$7 \ log_2 \ n$ parallel steps for the parallel computation on an SIMD machine with $n^2$ processors is so far the best one. (English)
Keyword: fourth-order
Keyword: biharmonic operator
Keyword: Laplace operators
Keyword: Jacobi semi- iterative
Keyword: Richardson
Keyword: A.D.I.
Keyword: fast Fourier transform
Keyword: SIMD machine
MSC: 35J40
MSC: 65F10
MSC: 65N05
MSC: 65N20
MSC: 65N22
idZBL: Zbl 0581.65075
idMR: MR0789859
DOI: 10.21136/AM.1985.104140
.
Date available: 2008-05-20T18:27:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104140
.
Reference: [1] B. L. Buzbee G. H. Golub C. W. Nielson: On direct methods for solving Poisson's equations.SIAM J. Num. Analys., Vol. 7 (1970), 627-656. MR 0287717, 10.1137/0707049
Reference: [2] B. L. Buzbee F. W. Dorr: Ths direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions.SIAM J. Num. Analys., Vol. 11 (1974)753-762. MR 0362944
Reference: [3] F. W. Dorr: The direct solution of the discrete Poisson equation on a rectangle.SIAM Rev., Vol. 12 (1970), 248-263. Zbl 0208.42403, MR 0266447, 10.1137/1012045
Reference: [4] L. W. Ehrlich: Solving the biharmonic equation as coupled finite difference equations.SIAM J. Num. Analys., Vol. 8 (1971), 278-287. Zbl 0215.55702, MR 0288972, 10.1137/0708029
Reference: [5] L. W. Ehrlich: Solving the biharmonic equation in a square: A direct versus a semidirect method.Comm. ACM, Vol. 16 (1973), 711-714. Zbl 0269.65054, 10.1145/355611.362550
Reference: [6] R. Glowinski O. Pironneau: Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem.SIAM Rev., Vol. 21 (1979), 167-212. MR 0524511, 10.1137/1021028
Reference: [7] D. Greenspan D. Schultz: Fast finite-difference solution of biharmonic problems.Comm. ACM, Vol. 15 (1972), 347-350. MR 0314277, 10.1145/355602.361313
Reference: [8] D. Greenspan D. Schultz: Simplification and improvement of a numerical method for Navier-Stokes problems.Proc. 15. Differential equations Keszthely (1975) 201 - 222. MR 0502088
Reference: [9] M. M. Gupta: Discretization error estimates for certain splitting procedures for solving first biharmonic boundary value problems.SIAM J. Num. Analys., Vol. 12. (1975), 364- 377. MR 0403256, 10.1137/0712029
Reference: [10] R. W. Hockney: The potential calculation and some applications.Methods in computational physics 9 (1970), 135-211.
Reference: [11] A. H. Sameh S. C. Chen D. J. Kuck: Parallel Poisson and biharmonic solvers.Computing, Vol. 17(1976), 219-230. MR 0438737
Reference: [12] M. Vajteršic: A fast algorithm for solving the first biharmonic boundary value problem.Computing, Vol. 23 (1979), 171-178. MR 0619928, 10.1007/BF02252095
Reference: [13] M. Vajteršic: A fast parallel solving the biharmonic boundary value problem on a rectangle.Proc. of 1st European Conference on Parallel and Distributed Processing, Toulouse 1979, 136-141.
Reference: [14] R. S. Varga: Matrix Iterative Analysis.Prentice-Hall, New York 1962. MR 0158502
Reference: [15] D. M. Young: Iterative Solution of Large Linear Systems.Academic Press, New York 1971. Zbl 0231.65034, MR 0305568
.

Files

Files Size Format View
AplMat_30-1985-3_4.pdf 1.622Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo