Previous |  Up |  Next

Article

Title: On the concreteness of quantum logics (English)
Author: Pták, Pavel
Author: Wright, John D. Maitland
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 4
Year: 1985
Pages: 274-285
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: It is shown that for any quantum logic $L$ one can find a concrete logic $K$ and a surjective homomorphism $f$ from $K$ onto $L$ such that $f$ maps the centre of $K$ onto the centre of $L$. Moreover, one can ensure that each finite set of compatible elements in $L$ is the image of a compatible subset of $K$. This result is "best possible" - let a logic $L$ be the homomorphic image of a concrete logic under a homomorphism such that, if $F$ is a finite subset of the pre-image of a compatible subset of $L$, then $F$ is compatible. Then $L$ must be concrete. In the second part one considers embeddings into concrete logics. It is shown that any concrete logic can be embedded into a concrete logic with preassigned centre and an abundance of two-valued measures. Finally, one proves that an arbitrary logic can be mapped into a concrete logic by a centrally additive mapping which preserves the ordering and complementation. (English)
Keyword: orthomodular lattice
Keyword: orthomodular poset
Keyword: centres
Keyword: orthocomplemented posets
Keyword: concrete logics
MSC: 03G12
MSC: 06C15
MSC: 81B10
idZBL: Zbl 0586.03050
idMR: MR0795987
DOI: 10.21136/AM.1985.104150
.
Date available: 2008-05-20T18:27:46Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104150
.
Reference: [1] V. Alda: On 0-1 measures for projectors.Aplikace Matematiky 26, 57-58 (1981). MR 0602402
Reference: [2] L. J. Bunce D. M. Wright: Qantum measures and states on Jordan algebras.Comm. Math. Phys. (To appear). MR 0786572
Reference: [3] J. Brabec P. Pták: On compatibility in quantum logics.Foundations of Physics, Vol. 12, No. 2, 207-212 (1982). MR 0659779, 10.1007/BF00736849
Reference: [4] R. Godowski: Varieties of orthomodular lattices with a strongly full set of states.Demonstration Mathematica, Vol. XIV, No. 3, (1981). Zbl 0483.06007, MR 0663122
Reference: [5] R. Greechie: Orthomodular lattices admitting no states.J. Comb. Theory 10, 119-132 (1971). Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [6] S. Gudder: Stochastic Methods in Quantum Mechanics.North-Holland 1979. Zbl 0439.46047, MR 0543489
Reference: [7] P. Pták: Weak dispersion-free states and the hidden variables hypothesis.J. Math. Physics 24 (4), 839-840(1983). MR 0700618, 10.1063/1.525758
Reference: [8] P. Pták V. Rogolewicz: Measures on orthomodular partially ordered sets.J. Pure and Applied Algebra 28, 75-85 (1983). MR 0692854, 10.1016/0022-4049(83)90074-9
Reference: [9] S. Pulmannová: Compatibility and partial compatibility in quantum logics.Ann. Inst. Henri Poincaré, Vol. XXXIV, No. 4, 391-403 (1981). MR 0625170
Reference: [10] R. Sikorski: Boolean Algebras.Springer-Verlag (1964). Zbl 0123.01303, MR 0126393
Reference: [11] V. Varadarajan: Geometry of Quantum Theory I.Von Nostrand, Princeton (1968). MR 0471674
Reference: [12] M. Zierler M. Schlessinger: Boolean embedding of orthomodular sets and quantum logics.Duke J. Math. 32, 251-262 (1965). MR 0175520, 10.1215/S0012-7094-65-03224-2
.

Files

Files Size Format View
AplMat_30-1985-4_4.pdf 1.554Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo