Title:
|
On the concreteness of quantum logics (English) |
Author:
|
Pták, Pavel |
Author:
|
Wright, John D. Maitland |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
30 |
Issue:
|
4 |
Year:
|
1985 |
Pages:
|
274-285 |
Summary lang:
|
English |
Summary lang:
|
Czech |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
Summary:
|
It is shown that for any quantum logic $L$ one can find a concrete logic $K$ and a surjective homomorphism $f$ from $K$ onto $L$ such that $f$ maps the centre of $K$ onto the centre of $L$. Moreover, one can ensure that each finite set of compatible elements in $L$ is the image of a compatible subset of $K$. This result is "best possible" - let a logic $L$ be the homomorphic image of a concrete logic under a homomorphism such that, if $F$ is a finite subset of the pre-image of a compatible subset of $L$, then $F$ is compatible. Then $L$ must be concrete. In the second part one considers embeddings into concrete logics. It is shown that any concrete logic can be embedded into a concrete logic with preassigned centre and an abundance of two-valued measures. Finally, one proves that an arbitrary logic can be mapped into a concrete logic by a centrally additive mapping which preserves the ordering and complementation. (English) |
Keyword:
|
orthomodular lattice |
Keyword:
|
orthomodular poset |
Keyword:
|
centres |
Keyword:
|
orthocomplemented posets |
Keyword:
|
concrete logics |
MSC:
|
03G12 |
MSC:
|
06C15 |
MSC:
|
81B10 |
idZBL:
|
Zbl 0586.03050 |
idMR:
|
MR0795987 |
DOI:
|
10.21136/AM.1985.104150 |
. |
Date available:
|
2008-05-20T18:27:46Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/104150 |
. |
Reference:
|
[1] V. Alda: On 0-1 measures for projectors.Aplikace Matematiky 26, 57-58 (1981). MR 0602402 |
Reference:
|
[2] L. J. Bunce D. M. Wright: Qantum measures and states on Jordan algebras.Comm. Math. Phys. (To appear). MR 0786572 |
Reference:
|
[3] J. Brabec P. Pták: On compatibility in quantum logics.Foundations of Physics, Vol. 12, No. 2, 207-212 (1982). MR 0659779, 10.1007/BF00736849 |
Reference:
|
[4] R. Godowski: Varieties of orthomodular lattices with a strongly full set of states.Demonstration Mathematica, Vol. XIV, No. 3, (1981). Zbl 0483.06007, MR 0663122 |
Reference:
|
[5] R. Greechie: Orthomodular lattices admitting no states.J. Comb. Theory 10, 119-132 (1971). Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X |
Reference:
|
[6] S. Gudder: Stochastic Methods in Quantum Mechanics.North-Holland 1979. Zbl 0439.46047, MR 0543489 |
Reference:
|
[7] P. Pták: Weak dispersion-free states and the hidden variables hypothesis.J. Math. Physics 24 (4), 839-840(1983). MR 0700618, 10.1063/1.525758 |
Reference:
|
[8] P. Pták V. Rogolewicz: Measures on orthomodular partially ordered sets.J. Pure and Applied Algebra 28, 75-85 (1983). MR 0692854, 10.1016/0022-4049(83)90074-9 |
Reference:
|
[9] S. Pulmannová: Compatibility and partial compatibility in quantum logics.Ann. Inst. Henri Poincaré, Vol. XXXIV, No. 4, 391-403 (1981). MR 0625170 |
Reference:
|
[10] R. Sikorski: Boolean Algebras.Springer-Verlag (1964). Zbl 0123.01303, MR 0126393 |
Reference:
|
[11] V. Varadarajan: Geometry of Quantum Theory I.Von Nostrand, Princeton (1968). MR 0471674 |
Reference:
|
[12] M. Zierler M. Schlessinger: Boolean embedding of orthomodular sets and quantum logics.Duke J. Math. 32, 251-262 (1965). MR 0175520, 10.1215/S0012-7094-65-03224-2 |
. |