Previous |  Up |  Next

Article

Title: Optimal design of an elastic beam on an elastic basis (English)
Author: Chleboun, Jan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 2
Year: 1986
Pages: 118-140
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: An elastic simply supported beam of given volume and of constant width and length, fixed on an elastic base, is considered. The design variable is taken to be the thickness of the beam; its derivatives of the first order are bounded both above and below. The load consists of concentrated forces and moments, the weight of the beam and of the so called continuous load. The cost functional is either the $H^2$-norm of the deflection curve or the $L^2$-norm of the normal stress in the extemr fibre of the beam. Existence of solutions of optimization problems in both the primary and dual formulations of the state problem is proved. For both formulations, approximate problems are introduced and convergence of their solutions to those of the continuous problem is established. Theoretical conclusions are corroborated by an illustrative example. (English)
Keyword: optimal design
Keyword: concentrated forces and moments
Keyword: continuous load
Keyword: cost functional
Keyword: $H^2$-norm of the deflection curve
Keyword: $L^2$-norm of the normal stress
Keyword: primary and dual formulations
Keyword: elastic beam
Keyword: elastic foundation
Keyword: existence
Keyword: convergence
MSC: 73k40
MSC: 74B05
MSC: 74K10
MSC: 74P99
idZBL: Zbl 0606.73108
idMR: MR0837473
DOI: 10.21136/AM.1986.104192
.
Date available: 2008-05-20T18:29:39Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104192
.
Reference: [1] M. S. Bazaraa C. M. Shetty: Nonlinear Programming, Theory and Algorithms.(Russian translation - Mir, Moskva 1982.) MR 0671086
Reference: [2] D. Begis R. Glowinski: Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés.Applied Mathematics & Optimization, 2 (1975), 130-169. MR 0443372, 10.1007/BF01447854
Reference: [3] R. Courant D. Hilbert: Methoden der matematischen Physik I.Springer-Verlag 1968, 3. Auflage. MR 0344038
Reference: [4] S. Fučík J. Milota: Mathematical Analysis II.(Czech - University mimeographed texts.) SPN Praha 1975.
Reference: [5] I. Hlaváček: Optimization of the shape of axisymmetric shells.Aplikace matematiky, 28 (1983), 269-294. MR 0710176
Reference: [6] I. Hlaváček I. Bock J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis. Optimal design of a beam with unilateral supports.Applied Mathematics & Optimization, 1984, 111-143. MR 0743922, 10.1007/BF01442173
Reference: [7] J. Chleboun: Optimal Design of an Elastic Beam on an Elastic Basis.Thesis (Czech). MFF UK Praha, 1984.
Reference: [8] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [9] S. Timoshenko: Strength of Materials, Part II.D. Van Nostrand Company, Inc. New York 1945. (Czech translation, Technicko-vědecké nakladatelství, Praha 1951.)
.

Files

Files Size Format View
AplMat_31-1986-2_4.pdf 3.031Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo