Previous |  Up |  Next

Article

Title: Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations (English)
Author: Feireisl, Eduard
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 3
Year: 1990
Pages: 192-208
Summary lang: English
.
Category: math
.
Summary: In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation $U_{tt}+dU_t-\sigma(x,t,U_x)_x+aU=f(x,t,U_x,U_t,U)$ with the Dirichlet boundary conditions is proved. No "smallness" assumptions are made concerning the function $f$. The main idea of the proof relies on the compensated compactness theory. (English)
Keyword: telegraph equation
Keyword: compensated compactness
Keyword: vanishing viscosity method
MSC: 35B10
MSC: 35L70
MSC: 35Q20
MSC: 47J25
idZBL: Zbl 0737.35040
idMR: MR1052740
DOI: 10.21136/AM.1990.104403
.
Date available: 2008-05-20T18:39:10Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104403
.
Reference: [1] H. Amann: Invariant sets and existence theorems for semilinear parabolic and elliptic systems.J. Math. Anal. Appl. 65 (1978), 432-467. Zbl 0387.35038, MR 0506318, 10.1016/0022-247X(78)90192-0
Reference: [2] H. Amann: Periodic solutions of semi-linear parabolic equations.Nonlinear Analysis: A collection of papers in honor of Erich Rothe, Academic Press, New York (1978), 1 - 29. MR 0499089
Reference: [3] K. N. Chueh C. C. Conley J. A. Smoller: Positively invariant regions for systems of nonlinear diffusion equations.Indiana Univ. Math. J. 26 (1977), 373 - 392. MR 0430536, 10.1512/iumj.1977.26.26029
Reference: [4] W. Craig: A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations.Ann. Sci. Norm Sup. Pisa Ser. IV- Vol. 10 (1983), 125-167. Zbl 0518.35057, MR 0713113
Reference: [5] R. J. DiPerna: Compensated compactness and general systems of conservation laws.Trans. Amer. Math. Soc. 292 (2) (1985), 383 - 420. MR 0808729, 10.1090/S0002-9947-1985-0808729-4
Reference: [6] R. J. DiPerna: Convergence of approximate solutions to conservation laws.Arch. Rational. Mech. Anal. 82 (1983) 27-70. Zbl 0519.35054, MR 0684413, 10.1007/BF00251724
Reference: [7] E. Feireisl: Time-dependent invariant regions for parabolic systems related to one-dimensional nonlinear elasticity.Apl. mat. 35 (1990), 184-191. Zbl 0709.73013, MR 1052739
Reference: [8] D. Henry: Geometric theory of semilinear parabolic equations.Lecture Notes in Math. 840, Springer-Verlag (1981). Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647
Reference: [9] P. Krejčí: Hard implicit function theorem and small periodic solutions to partial differential equations.Comment. Math. Univ. Carolinae 25 (1984), 519-536. MR 0775567
Reference: [10] A. Matsumura: Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation.Publ. RIMS Kyoto Univ. 13, (1977), 349-379. Zbl 0371.35030, MR 0470507, 10.2977/prims/1195189813
Reference: [11] A. Milani: Global existence for quasi-linear dissipative wave equations with large data and small parameter.Math. Z. 198 (1988), 291 - 297. MR 0939542
Reference: [12] A. Milani: Time periodic smooth solutions of hyperbolic quasilinear equations with dissipation term and their approximation by parabolic equations.Ann. Mat. Рurа Appl. 140 (4) (1985), 331-344. MR 0807643, 10.1007/BF01776855
Reference: [13] T. Nishida: Nonlinear hyperbolic equations and related topics in fluid dynamics.Publications Mathématiques D'Orsay 78.02, Univ. Paris Sud (1978). Zbl 0392.76065, MR 0481578
Reference: [14] H. Petzeltová: Applications of Moser's method to a certain type of evolution equations.Czechoslovak Math. J. 33 (1983), 427-434. MR 0718925
Reference: [15] H. Petzeltová M. Štědrý: Time periodic solutions of telegraph equations in n spatial variables.Časopis Pěst. Mat. 109 (1984), 60-73. MR 0741209
Reference: [16] P. H. Rabinowitz: Periodic solutions of nonlinear hyperbolic partial differential equations II.Comm. Pure Appl. Math. 22 (1969), 15-39. Zbl 0157.17301, MR 0236504, 10.1002/cpa.3160220103
Reference: [17] M. Rascle: Un résultat de "compacité par compensation à coefficients variables". Application à l'elasticitě non linéaire.C. R. Acad. Sci. Paris 302 Sér. I 8 (1986), 311 - 314. Zbl 0606.35054, MR 0838582
Reference: [18] D. Serre: La compacité par compensation pour lour les systemes hyperboliques non linéaires de deux équations a une dimension d'espace.J. Math. Pures et Appl. 65 (1986), 423 - 468. MR 0881690
Reference: [19] M. Slemrod: Damped conservation laws in continuum mechanics.Nonlinear Analysis and Mechanics Vol. III, Pitman New York (1978), 135-173. MR 0539691
Reference: [20] M. Štědrý: Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions.(to appear). MR 0995505
Reference: [21] L. Tartar: Compensated compactness and applications to partial differential equations.Research Notes in Math. 39, Pitman Press (1975), 136-211. MR 0584398
Reference: [22] O. Vejvoda, al.: Partial differential equations: Time periodic solutions.Martinus Nijhoff Publ. (1982). Zbl 0501.35001
.

Files

Files Size Format View
AplMat_35-1990-3_4.pdf 1.856Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo